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Abstract: The paper presents a comparative analysis of Machine Learning (ML) research 
methods allowing to assess the risk of mining damage occurring in traditional masonry build-
ings located in the mining area of Legnica-Głogów Copper District (LGOM) as a result of 
intense mining tremors. The database of reports on damage that occurred after the tremors of 
20 February 2002, 16 May 2004 and 21 May 2006 formed the basis for the analysis.

Based on these data, classification models were created using the Probabilistic Neural 
Network (PNN) and the Support Vector Machine (SVM) method.

The results of previous research studies allowed to include structural and geometric 
features of buildings,as well as protective measures against mining tremors in the model. The 
probabilistic notation of the model makes it possible to effectively assess the probability of 
damage in the analysis of large groups of building structures located in the area of paraseismic 
impacts. The results of the conducted analyses confirm the thesis that the proposed methodology 
may allow to estimate, with the appropriate probability, the financial outlays that the mining 
plant should secure for the repair of the expected damage to the traditional development of 
the LGOM mining area.

Keywords: mining damage, housing construction, compensation, damage risk, Machine 
Learning

1. Introduction
Underground mining adversely affects the surface and building structures by disturbing 

the balance of the rock mass. Mining tremors are the dominant type of mining impacts on 
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the development of the Legnica-Głogów Copper District (LGOM). They occur as a result of 
sudden displacement, collapse or fracture of the rock layers [1]. This is related to the release 
of energy, which poses a threat both to mining excavations in the underground part of the mine 
and to objects located on the surface (e.g. [2]–[5]).

The occurrence of mining tremors in the LGOM area is caused by both natural and tech-
nological factors related to the method of extracting copper ore deposits. Limestone, sandstone 
and anhydrite rocks lying above copper ore deposits have the ability to accumulate elastic 
energy, releasing it during rock mass fracture. Another factor conducive to the accumulation 
of energy is the considerable depth of mining, ranging from 600 to over 1000 m [5],[6].

In 2002-2006, several high-energy mining tremors occurred in the LGOM. In the town 
of Polkowice, the three most intense ones occurred:

• on 20 February 2002 (tremor energy 1.5×109 J), 
• on 16 May 2004 (tremor energy 8.4×108 J) and
• on 21 May 2006 (tremor energy 1.9×109 J). 
After their occurrence, a large number of mining damage claims were recorded among 

traditional buildings in Polkowice . The analysis covered a group of 256 single-family build-
ings of traditional brick construction, erected between 1980 and 2002 in three housing estates. 

The location of epicentres of the tremors in relation to the analysed development is 
illustrated in Figure 1.

 

Fig. 1. Location of epicentres of high-energy mining tremors and analysed development. Source: [7]

The preliminary analysis of the database [8] allowed to select those features of the 
analysed structures that were related to the mining damage to the building as a result of 
a mining tremor.

In this way, a monolithic database was obtained, which made it possible to collect all 
the objects in a common set, ignoring the division into individual estates.
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Therefore, the conducted research aimed at creating classification models to assess mining 
impacts in the form of high-energy mining tremors on the intensity of damage to traditional 
development in the LGOM mining area.

In order to conduct a comparative analysis, the preliminary research was based on the 
structure of the reported mining damage [8],[9]. This article, which is a continuation of previous 
analyses, presents the results of research testing whether the use of the damage intensity index 
(wu), in the case of high-energy mining tremors, will enable a more accurate assessment of the 
extent of damage compared to the information contained in the reports. For this purpose, the 
Support Vector Machine (SVM) method was used in a classification approach. In addition, the 
K-means method was applied as a supporting analysis, which enabled the optimal categories 
of wu indices to be extracted, contributing to an increased level of accuracy of the model.

2. Research methodology

2.1. Probabilistic Neural Network (PNN)
Artificial neural networks are universal tools for multidimensional regression of problems 

and classification [10]. The advantage of PNN, unlike other artificial neural networks (e.g. 
MLP – Multilayer Perceptron or RBF – Radial Basis Function), is the possibility of interpret-
ing its structure as a conditional probability density distribution for a decision variable. The 
process of building PNN networks is also different when compared to multilayer perceptron 
networks. Due to the lack of weights on synaptic connections, it does not require learning 
that is typical for most other feedforward networks (data diodes) (e.g. [10]-[11]). During the 
network simulation, when projecting a given input of vector X, the “weighing” role is played 
by the Gaussian kernel functions, which are located on the palette of training patterns [12].

There are four computational layers in PNN (see Fig. 2): an input layer, a pattern layer, 
a summation layer and a decision layer (e.g. [10]).

Fig. 2. Structure of probabilistic neural network PNN. Source: [10]
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In the input layer, a given signal is introduced into the network in the form of a multi-
dimensional vector X = (x1,…,xn)TRn. In the next layer, for the vector X given at the input, 
the signals are recognised in relation to the kernel function Fki(X). These functions constitute 
cluster areas for data patterns of categories divided into k = 1..K groups and corresponding to 
individual categories of the decision variable (at the network output). Thus, the activation value 
of individual kernel functions is obtained [11]. The individual kernel functions are Gaussian 
curves written in the following form:
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σ - width (fuzzy parameter) of the kernel function, 
XkiRn - pattern in the input space constituting the centre of the kernel function Fki. 

 
In the summation layer, for each separated subgroup of pattern neurons representing K 

different categories within a given category (k = 1..K), all activated kernel functions are 
aggregated, the course of which can be written in the following form [11]: 

𝐺𝐺𝑘𝑘(𝑋𝑋) = ∑ 𝑤𝑤𝑘𝑘𝑘𝑘𝐹𝐹𝑘𝑘𝑘𝑘(𝑋𝑋)𝑘𝑘 ∈ {1, … , 𝐾𝐾}𝑀𝑀𝑘𝑘
𝑘𝑘=1  (2) 

Mk - number of neurons from the pattern layer assigned to recognise k-th category, 
wki - weights meeting the assumption  ∑ 𝑤𝑤𝑘𝑘𝑘𝑘 = 1𝑀𝑀𝑘𝑘

𝑘𝑘=1 . 
 
As a result of comparing the Gk values calculated in the summation layer  

and selecting the k category for which Gk has the highest value, the result of the pattern X 
classification is obtained (e.g. [12]-[13]): 

𝐶𝐶(𝑋𝑋) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑒𝑒𝑙𝑙≤𝑘𝑘≤𝐾𝐾(𝐺𝐺𝑘𝑘) (3) 

It was possible to make the obtained classification result more detailed by  
the probability level based on the information contained in the third (summation) layer, which 
stores the levels of activation of the kernel functions for individual categories. Due to the fact 
that these functions are Gaussian functions, the resultant value of this activation can be 
equated with the risk measure of mining damage occurrence in probabilistic notation. 

2.2. Support Vector Machine method (SVM) in classification approach  

SVM networks, also known as the Support Vector Machine method, belong to the group 
of feedforward networks with a two-layer structure (consisting of a hidden layer and an 
output layer) that can use different types of activation functions (linear, polynomial, radial 
and sigmoid) [10]. 

The inspiration for the creation of the method, the origins of which date back to  
the 1970s [14], was the idea of separating classes by means of a linear decision boundary 
(hyperplane), the location of which would be optimal for the observed learning sample. 

In 1998, Vapnik [15], striving to eliminate the imperfections of MLP (Multilayer 
Perceptron) and RBF (Radial Basis Function) neural networks, using error function 
minimisation in learning, presented a new approach in terms of network construction  
and learning. 
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The essence of the SVM operation in terms of classification, the structure of which is 
illustrated in Figure 3 [10], is the presentation of learning as a weight selection process that 
maximises the so-called margin of separation that separates different classes in the data space.

w0 – weight introducing the component of the constant function shift.

Fig. 3. Basic structure of a nonlinear SVM network. Source: [10]

The supporting vector method performs classification tasks for both continuous and cate-
gorised variables, which construct optimal hyperplanes in a multidimensional space separating 
data belonging to different classes with a maximum margin of separation [10].

The main problem related to the construction of the SVM classification network is the 
appropriate selection of parameters: C – which is a regularisation constant occurring in the 
loss function and conditioning the learning process (e.g. [16]) and γ – which determines the 
bandwidth of the adopted kernel functions. Determination of the optimal values of these param-
eters is performed with the use of the gradientless optimisation method of pattern search [17].

In the case of the classification of non-linearly separable data, the commonly used solu-
tion is the use of the Cover’s theorem (e.g. [10], [18]). It consists in projecting the original x 
patterns from the primary space (N) into another functional space – the feature space (K), with 
a higher dimension (K ≥ N), in which the patterns are linearly separable. The feature space, 
defined by means of radial functions, into which the inseparable linear data in the primary 
space has been transformed, is represented by Formula:
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in the loss function and conditioning the learning process (e.g. [16]) and γ – which determines 
the bandwidth of the adopted kernel functions. Determination of the optimal values of these 
parameters is performed with the use of the gradientless optimisation method of pattern 
search [17]. 

In the case of the classification of non-linearly separable data, the commonly used 
solution is the use of the Cover's theorem (e.g. [10], [18]). It consists in projecting  
the original x patterns from the primary space (N) into another functional space –  
the feature space (K), with a higher dimension (K ≥ N), in which the patterns are linearly 
separable. The feature space, defined by means of radial functions, into which  
the inseparable linear data in the primary space has been transformed, is represented by 
Formula: 

𝜑𝜑(𝑥𝑥) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−‖(𝑥𝑥−𝑐𝑐)‖
2

𝛾𝛾2 ) (4) 

γ - radial function bandwidth, 
c - radial function centres, 
x – input pattern vector. 
 
As a result of the performed transformation, the equation of the hyperplane in the 

feature space is described by Formula [10]: 

𝑦𝑦(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥) + 𝑏𝑏 = ∑ 𝜔𝜔𝑗𝑗𝜑𝜑𝑗𝑗(𝑥𝑥) + 𝑏𝑏 = 0𝐾𝐾
𝑗𝑗=1  (5)  (5)
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wT – weights vector,
b – polarisation weight,
φ(ˑ):Rn→Rn

h – transformation transforming the original input data into the feature space,
ωj – j-th weight between the neuron in the hidden layer and the output neuron.

At the points closest to the hyperplane, defining its course, but at the same time the most 
difficult to classify, the support vectors will be created (see Fig. 4).

Fig. 4. Optimal hyperplane with maximum margin of separation. Source: [19]

Learning the SVM nonlinear network consists in determining the value of the weight 
vector w, so that for non-linearly separable variables the classifying hyperplane that mini-
mises the assumed error function is determined while maintaining the margin of separation 
of the maximisation condition. In this process, depending on the value of the C regularisation 
constant, the network complexity is reduced [10], [19].

The kernel function K(x, xi) can be used in a nonlinear SVM network if it satisfies the 
Mercer condition [15],[16]. This theorem answers the question whether the analysed kernel 
function can be presented in the form of two unspecified vector functions φ(x) and φ(xi), and 
whether the symmetrical continuous function K(x, xi) is expandable into a series:
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Learning the SVM nonlinear network consists in determining the value of the weight 
vector w, so that for non-linearly separable variables the classifying hyperplane that 
minimises the assumed error function is determined while maintaining the margin of 
separation of the maximisation condition. In this process, depending on the value of the C 
regularisation constant, the network complexity is reduced [10], [19]. 

The kernel function K(x, xi) can be used in a nonlinear SVM network if it satisfies the 
Mercer condition [15],[16]. This theorem answers the question whether the analysed kernel 
function can be presented in the form of two unspecified vector functions φ(x) and φ(xi),  
and whether the symmetrical continuous function K(x, xi) is expandable into a series: 
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φ(x), φi(xi) - vector functions, 
λi  - non-negative complementary variable. 

 
Examples of the kernel functions meeting the assumed Mercer condition are presented 

in Table 1.  
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φ(x), φi(xi) – vector functions,
λi – non-negative complementary variable.

Examples of the kernel functions meeting the assumed Mercer condition are presented 
in Table 1. 
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Table 1. Examples of kernel functions. Source: [10]

Kernel type Equation Remarks
Linear
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Table 1. Examples of kernel functions. Source: [10] 

Kernel type Equation Remarks 
Linear 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑥𝑥𝑇𝑇𝑥𝑥 + 𝛾𝛾 γ - any 

Polynomial 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = (𝑥𝑥𝑇𝑇𝑥𝑥 + 𝛾𝛾)𝑝𝑝 p – polynomial degree 

Radial 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑥𝑥𝑒𝑒 (−1𝛾𝛾 ‖𝑥𝑥 − 𝑥𝑥𝑖𝑖‖2) γ - common to all kernels 

Sigmoid 𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) = 𝑡𝑡𝑡𝑡ℎ(𝛽𝛽1𝑥𝑥𝑇𝑇𝑥𝑥𝑖𝑖 + 𝛽𝛽0) Constraints on β0 and β1 
 
Ultimately, the output of the nonlinear SVM network depends on the kernel function 

K(x, xi) and is defined as: 

𝑦𝑦(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝜑𝜑(𝑥𝑥) + 𝑏𝑏 = ∑ ∝𝑖𝑖 𝑑𝑑𝑖𝑖𝐾𝐾(𝑥𝑥, 𝑥𝑥𝑖𝑖) + 𝑏𝑏𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1  (7) 

Nsv - number of support vectors xi, 
αi - Lagrange multiplier, 
di - pattern value, 
K(x,xi) - kernel function. 

2.3. K-means method  

In addition to Machine Learning (ML) methods, the k-means clustering method was 
also used. It was aimed at indicating the optimal categorisation of the variables determining 
the value of the damage intensity index (wu) and the standardised amount of compensation 
paid for mining damage (kwt) to the modelling stage. 

For this technique, it is necessary to pre-define the parameter k, which determines  
the number of subgroups that will be separated from the data set. The similarity in a given 
cluster should be as large as possible, and separate groups should differ as much as possible 
from each other. The selection of the initial locations of the centres of clusters is made 
arbitrarily or randomly. In the next steps, adjustments are made by repeating the method with 
different values of the k parameter and evaluating the means for a particular cluster in each 
analysed dimension. The algorithm of the method, consisting in transferring objects between 
clusters, lasts until the variability within clusters is minimised and it is maximised between 
clusters [20]. 

3. Mining damage risk assessment model - PNN 

The database containing the reported damage to single-family housing estates in  
the town of Polkowice formed the basis for the creation of the model for the assessment of 
the risk of mining damage. The damage was the consequence of high-energy mining tremors 
of 20 February 2002, 16 May 2004 and 21 May 2006. 

Two PNNs were created with the use of MATLAB [17]. For building the optimal 
network structure, it was essential to determine the value of the parameter σ defining  
the bandwidth of the Gaussian kernel function, adopted in an arbitrary manner [12].  
For the created networks, the values of the σ parameters were selected by means of gradual 
adjustments resulting in obtaining the highest classification accuracy for the training and test 
sets and the smallest difference between them, thus guaranteeing high generalisation 
properties. As it was mentioned in Chapter 2.1, this network allows for a probabilistic 

γ – any
Polynomial
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For the created networks, the values of the σ parameters were selected by means of gradual 
adjustments resulting in obtaining the highest classification accuracy for the training and test 
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properties. As it was mentioned in Chapter 2.1, this network allows for a probabilistic 
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the number of subgroups that will be separated from the data set. The similarity in a given 
cluster should be as large as possible, and separate groups should differ as much as possible 
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properties. As it was mentioned in Chapter 2.1, this network allows for a probabilistic 

Constraints on β0 and β1

Ultimately, the output of the nonlinear SVM network depends on the kernel function 
K(x, xi) and is defined as:
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Nsv – number of support vectors xi,
αi – Lagrange multiplier,
di – pattern value,
K(x,xi) – kernel function.

2.3. K-means method
In addition to Machine Learning (ML) methods, the k-means clustering method was also 

used. It was aimed at indicating the optimal categorisation of the variables determining the 
value of the damage intensity index (wu) and the standardised amount of compensation paid 
for mining damage (kwt) to the modelling stage.

For this technique, it is necessary to pre-define the parameter k, which determines the 
number of subgroups that will be separated from the data set. The similarity in a given cluster 
should be as large as possible, and separate groups should differ as much as possible from 
each other. The selection of the initial locations of the centres of clusters is made arbitrarily 
or randomly. In the next steps, adjustments are made by repeating the method with different 
values of the k parameter and evaluating the means for a particular cluster in each analysed 
dimension. The algorithm of the method, consisting in transferring objects between clusters, 
lasts until the variability within clusters is minimised and it is maximised between clusters [20].

3. Mining damage risk assessment model – PNN
The database containing the reported damage to single-family housing estates in the 

town of Polkowice formed the basis for the creation of the model for the assessment of the 
risk of mining damage. The damage was the consequence of high-energy mining tremors of 
20 February 2002, 16 May 2004 and 21 May 2006.

Two PNNs were created with the use of MATLAB [17]. For building the optimal network 
structure, it was essential to determine the value of the parameter σ defining the bandwidth of 
the Gaussian kernel function, adopted in an arbitrary manner [12]. For the created networks, 
the values of the σ parameters were selected by means of gradual adjustments resulting in 
obtaining the highest classification accuracy for the training and test sets and the smallest 
difference between them, thus guaranteeing high generalisation properties. As it was mentioned 
in Chapter 2.1, this network allows for a probabilistic interpretation of the obtained result, 
understood as the risk of mining damage. Determining the probability for the results of PNN 
network classification consists in averaging the values of activated Gaussian kernels occurring 
in the penultimate layer of the network [12],[13].
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Reports after the first and, in total, after all tremors were analysed, and the number of the 
analysed cases was 222 and 284, respectively. The variables describing the technical, construction 
and material features of the studied development included: development type, building projection 
and building shape (they were determined in accordance with the Guideline [21]), foundation or 
basement wall structure, aboveground load-bearing wall structure, ceiling structure and differen-
tiation of ceiling levels within individual storeys, protection against paraseismic effects. The set 
of these features acted as input data for the created models. The data was divided into sets: the 
training set and the test set – used to evaluate the generalisation properties of the PNN network 
model (e.g. [10], [13]). The classification accuracy for such a network, both for the training set 
and the test set, reached the level of 70÷75% of correctly classified cases.

In order to demonstrate how the PNN network works in the mining damage risk assessment 
and in making the obtained classification results more detailed by the corresponding probability 
values, simulations of the created models were carried out, generating 768 sets of variables 
evenly distributed in the input space. The number of the cases resulted from the combination 
of representative states (values) of all analysed variables. In this way, the considered space of 
input variables was fully covered.

The results of the performed simulations, which were the mean of the obtained probabilities 
of mining damage for the individual values of the variables included in the model simulation, 
are presented in Table 2.

Table 2. Mining damage probability values for individual variables included in PNN model. Source: [9]

Variable Variable status
Probability of mining 
damage after one  
high-energy tremor

Probability of mining 
damage after three 
high-energy tremors

Development type
Detached 0.115 0.314
Terraced 0.165 0.370

Building shape

simple, compact 0.076 0.268
simple, elongated 0.114 0.337
poorly fragmented, compact 0.147 0.340
poorly fragmented, elongated 0.162 0.362
highly fragmented, compact 0.152 0.338
highly fragmented, elongated 0.179 0.405

Foundation/Base-
ment wall structure

concrete  
monolithic 0.116 0.325

concrete blocks 0.161 0.359
Overground  
load-bearing  
wall structure

slag concrete blocks 0.060 0.209

concrete blocks 0.217 0.473

Ceiling structure
monolithic reinforced 
concrete slab 0.128 0.292

prefabricated slabs 0.149 0.392

Various ceiling levels
Constant 0.105 0.321
Variable 0.169 0.359

Protected against 
paraseismic effects

No 0.163 0.358
Yes 0.113 0.327

The presented results allow to draw a conclusion that there is a tendency of an increase 
in the risk of mining damage occurrence with the occurrence of successive high-energy mining 
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tremors. The lack of clear relationship between the technical, construction as well as material 
features of the tested development and the increased risk of damage in the years 2002-2006, 
is noticeable. This is most likely due to the uncertain nature of the collected research material, 
based on reports resulting from subjective reactions of building owners or users reporting the 
occurrence of damage.

In order to illustrate the potential use of the created networks, an exemplary variant 
analysis was carried out, consisting in simulating the operation of the network for three 
buildings with different technical features and subject to a high-energy mining tremor.  
The results are presented in Table 3.

Table 3. Exemplary use of PNN to assess risk of mining damage in a single building with a given structure. 
Source: own study

Variable
Building I Building II Building III
Variable value

Development type detached Detached terraced

Building shape simple, compact poorly fragmented, 
compact

highly fragmented, 
elongated

Foundation/Basement walls concrete monolithic concrete monolithic concrete blocks
Overground load-bearing walls slag concrete blocks concrete blocks concrete blocks

Ceilings monolithic rein-
forced concrete slab prefabricated slabs

monolithic  
reinforced 
concrete slab

Various support level of ceilings variable Constant constant
Protected against paraseismic effects yes No no
Risk of mining damage: 0.48 0.63 0.69

The obtained results depend on the variables indicating the analysed features of buildings. 
As a result, the risk of mining damage was obtained that occurred in a building with given 
technical properties after a tremor with energy level falling within the values of the seismic 
phenomena analysed in the study.

4. SVM network in assessing the extent of damage intensity
Further research was carried out to verify the effectiveness of using the damage intensity 

index wu (e.g. [22],[23]). It was checked whether in the case of high-energy mining tremors, 
the use of the damage intensity index allowed for a more accurate assessment of their extent 
as compared to the information contained in the reports. The decision was made that the SVM 
method would be used. The main advantage of this method, unlike typical artificial neural 
networks, is the uniqueness of the model building process and the high level of generalisation 
of the acquired knowledge [10]. Then, a comparative analysis of the created SVM model was 
carried out with the PNN network, in the description of which the damage intensity index 
(wu) was not used.

The next stage of the research involved the determination of the optimal division of the 
value of the building damage intensity index (wu) in relations to the uniform compensation 
amounts (kwt) into categories (wusk). For this purpose, the k-means method, belonging to the 
group of cluster analysis algorithms (e.g. [20]), was used. 

The method’s algorithm involves moving objects between clusters. It is executed until 
the variability within clusters is minimised, and between clusters is maximised.
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As a result of the above analysis regarding the value of the building damage intensity 
index (wu), four categories were distinguished. The obtained values of statistics and the divi-
sion of variables resulting from the conducted k-means cluster analysis are presented in Table 
4 and Figure 5.

Table 4. Results of k-means cluster analysis for building damage intensity index (wu) and uniform amount 
of compensation for mining damage (kwt). Source: own study

Cluster Statistics
Variables
wu kwt [PLN]

I
Mean 4.88 992
standard deviation 1.27 446

II
Mean 9.75 1777
standard deviation 1.56 506

III
Mean 16.03 5497
standard deviation 1.08 726

IV
Mean 20.42 8232
standard deviation 1.04 211

 

Fig. 5. Division of the building damage intensity index (wu) by the k-means method in relation to the uniform 
amount of compensation for mining damage (kwt). Source: own study

As a result of the research, the results were obtained that indicated the optimal divisions 
of the variables for further analysis. This allowed to introduce the following grading for the 
wusk variable (degrees of intensity of generalised building damage index):

• 0, when wu = 0,
• 1, when wu = (0; 5>,
• 2, when wu = (5; 10>,
• 3, when wu = (10; 15>,
• 4, when wu = (15; 20>,
• 5, when wu > 20.
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For the construction of the SVM classification network model after all three high-energy 
mining tremors, categorised building damage intensity indices (wusk), structural and geometric 
features of the analysed development, as well as the protection against mining tremors or lack 
of it, were adopted as variables. The data set was divided into the training set and the test set, 
and the total number of the analysed cases was 516. The variables adopted for the analysis 
together with their division are demonstrated in Table 5.

Table 5. Variables included in classification model of SVM network. Source: own study

Variable Code Variable division
Categorical dependent variable

Building damage intensity index categories wusk

0, when wu = 0,
1, when wu = (0;5>,
2, when wu = (5;10>,
3, when wu = (10;15>,
4, when wu = (15;20>,
5, when wu > 20.

Categorical input variable

Development type rz
1 – detached and semi-detached,
2 – terraced.

Projection and building shapes ks

1 – straight or weakly segmented, compact,
2 – straight or weakly segmented, elongated
3 – strongly disjointed, compact,
4 – strongly disarticulated, elongated.

Basement or foundation wall structure sp
1 – made of concrete blocks,
2 – monolithic concrete.

Overground load-bearing wall structure sw
1 – from hollow blocks of slag concrete,
2 – from cellular concrete blocks.

Ceiling structure st
1 – slab, prefabricated,
2 – monolithic reinforced concrete.

Various support level of ceilings in a storey zp
1 – none,
2 – present.

Protection against paraseismic effects tr
1 – none,
2 – present.

In accordance with the adopted methodology (Chapter 2.2), the parameters C and γ, 
which condition the final shape of the SVM network structure, were determined as a result of 
pattern search (PS) optimisation in the MATLAB environment [17].

The summary of the basic characteristics of the created SVM classification network 
model and the results of the simulations are presented in Table 6.

Table 6. Characteristics and validity of SVM classification model to assess intensity category of building 
damage intensity index wusk. Source: own study

Kernel type Parameter C
Kernel 
function γ 
bandwidth

Number of support 
vectors

Classification accuracy

Learning 
sample (70%)

Test 
sample 
(30%)

Model 
parameters RBF 1.0 0.25 121 80.1% 74.8%
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The presented results point to a noticeable reduction in the number of support vectors, 
constituting the core of the SVM network structure, in relation to the number of patterns in the 
training set – c.f. Table 6. This reduction, when compared to the original number of learning 
patterns, from 361 to 121, proves good generalisation properties of the constructed model. 
The obtained levels of accurate classifications of the created model, both for the training set 
and the test set, reached the values of 75÷80% of correctly classified cases.

As a result of the applied categorisation of the intensity of damage observed in the 
object based on the k-means method, the classification level was about 5% better than that of 
a probabilistic PNN neural network based on subjective reports of building owners reporting 
the fact of damage, analysed in Chapter 3.

5. Summary
The results of the conducted analyses demonstrate that the created model of the SVM 

classification network, when compared to the probabilistic PNN neural network, allows for 
a more precise determination of the extent of potential damage in the analysis of large groups 
of buildings located in the area of paraseismic interactions. This is due to the change in the 
original form of the damage description and the use of the optimal categorisation of the 
damage intensity index (wu). Therefore, it can be concluded that the integration of the SVM 
and k-means methods is more effective for describing the risk of damage to buildings located 
in the area of intense mining tremors.

Therefore, it has been proved that carrying out a detailed inspection of the technical 
condition of buildings using the damage intensity index (wu) after the occurrence of a high-en-
ergy mining tremor allows for a more precise determination of the extent of potential damage 
to building structures than in the case of data resulting from subjective reports of their owners 
or users reporting the occurrence of damage.

The presented results of the analyses should be treated as an assessment of the phenom-
enon on a global scale. Determining the influence of mining effects on a specific building 
requires an individual assessment of the picture and causes of damage, and often a detailed 
numerical analysis is necessary there as well.
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