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Abstract: The tests results of composite reinforced concrete T-shaped beams with an 
interface between the web and the flange are presented. The interface in the beams differed in 
the degree of the adhesion activity and the joining reinforcement ratio. Five series of beams 
were tested for deflection, displacement of composite parts in relation to each other, strain of 
main and transverse reinforcement, and crack pattern. The results were compared with the 
theoretical forces at which interface cracks and achieves the bearing capacity, calculated in 
accordance with fib Model Code 2010.
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1. Introduction
The aim of joining two concrete elements into a one structure is to obtain the quasi-mon-

olithic structure with a load bearing capacity greater than a sum of load capacities of the 
components. The consideration of such a structure as a quasi-monolithic one is allowed only 
if the interface between joined elements is correctly arranged. Structural connection provides 
technological advantages, e.g., enables partial prefabrication or stage production and determines 
the effectiveness of repairs or enhancements of existing structures. Therefore, it is important 
to identify the interface stress-strain characteristics, including ultimate load and stress, which 
causes the interface crack. The influence of these parameters on the static performance of 
the composite element has already been repeatedly described by researchers in relation to 
rectangular reinforced concrete elements [1]–[4]; in the rare cases – T-shaped beams [5]–[7].

The authors of this paper have already conducted research on T-shaped composite beams, 
in which they analysed the influence of the interface location [8], [9] and the influence of 
variously arranged interface parameters on the static performance of such beams [10]–[13]. 
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This paper describes the development of the previous investigations with the (S2) beams with 
interface adhesion broken by use of PVE membrane. Two subseries A and B of the S2 series 
with various interface reinforcement ratios were tested.

The results of the new subseries investigations have been incorporated into a joint 
analysis, which is presented below. The reported results include: damage mechanism, crack 
and failure loads, deflections and displacements of components at the end of the element in 
relation to each other, strain of the main and transverse reinforcement. In addition, the work 
compares the obtained results with the theoretical values computed in accordance with the 
guidelines contained in fib Model Code 2010.

2. Elements investigated and tests
The T-shaped composite beams with the variously arranged interface, located between 

the web and flange were tested. Their dimensions were: 1800 mm in span length, 640 x 50 mm 
flange cross-section, and 80 x 150 mm web cross-section (Fig. 1). The beams were designed 
to be damaged in the support zones. The procedure of a beam production was divided into two 
stages. First, the concrete mix forming the web was placed in the mould. After compacting the 
concrete mix, the contact surface was left in its natural state. The average value of roughness 
depth was about 4 mm (height from peak to valley) therefore the surface of the interface was 
classified as “rough”. Next, after 14 days of concrete moisturizing and preparing an “old” 
concrete surface (by wire brushes to delete the cement milk) the mould was completed with 
a layer of a ”new” concrete. The longitudinal reinforcement consisted of two Ø14 mm bars 
(the longitudinal reinforcement ratio was 2.21%), while the upper reinforcement consisted of 
two Ø8 mm bars. Stirrups made of Ø4 mm wires were used.

Five series of beams were performed with the interface arranged as follows:
• BZ/P+S – reinforced interface (ρi= 0.21%) with adhesion,
• BZ/P – non-reinforced interface with adhesion,
• BZ/S1 – reinforced interface (ρi=0.21%) with the surface of the „old” concrete treated 

using a chemical agent in order to limit the adhesion,
• BZ/S2 – reinforced interface (BZ/S2/A subseries – ρi=0.21%, BZ/S2/B subseries –

ρi=0.42%) with adhesion broken by use of the PVE membrane.

Fig. 1. Details of beams tested: a) longitudinal section, b) cross-sections; TS1/6, TS2/5, TS4– strain gauges 
on the stirrups, TS3 – strain gauges on the main bar. Source: own study
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The beams were tested as simply supported ones in the four-point bending test. In order 
to ensure stability, the beams were inverted upside down and the load was applied using a rigid 
traverse (Fig. 2).

In each series, three beams were tested. The load of one beam in each series was constantly 
increased with 0.5 kN/min rate. For the other beams in the series, the load was stopped at 
intervals of 10 kN to register the width and pattern of cracks. Deflection and strain of bars 
were measured automatically by LVTD and strain gauges.

The steel and the concrete parameters of the “bottom” and the “top” layer were conducted 
using standard laboratory testing methods on reference specimens for each series. Average 
values of material parameters are listed in Table 1.

Fig. 2.  A view of the beam prepared for the test. Source: own study

Table 1. Average values of material parameters. Source: own study

Compressive Strength fcm  
[MPa]

Tensile Strength  fctm  
[MPa]

Modulus of Elasticity Ecm 
[GPa]

BZ/P+S
Bottom 47.01 3.57 35.00
Top 44.37 3.36 34.40
BZ/P
Bottom 48.87 3.43 35.41
Top 41.54 3.18 33.73
BZ/S1
Bottom 45.55 3.04 34.67
Top 42.76 3.06 34.02
BZ/S2/A and BZ/S2/B
Bottom 57.25 3.56 37.13
Top 54.72 3.49 36.63
Stirrups yield  
stress fywm [MPa] 340

Longitudinal reinforcement  
yield stress fym [MPa] 545

Modulus of elasticity  
of reinforcement Es [GPa] 200
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3. Test results

3.1. Crack pattern and failure mechanism
The cracks morphology was investigated by documenting the cracks appearance on two 

beams of each series. Each of them was described and measured by the Brinell microscope. 
Measurements were made at each load step. Characteristic crack patterns for representative 
beams from various series after failure were shown in Fig. 3 and 4.

The cracking process, in all beams, began from vertical cracks, which appeared in the 
web. The first ones were located under the applied load, the next ones appeared in the zone 
of a constant moment. As the load increased, the diagonal cracks appeared, and they began 
to dominate the cracking process.

The largest widths were reached by the first diagonal cracks. Until the diagonal crack 
reached the interface (the load was about 70 kN) the crack pattern in all series looked similar.

Later, in the BZ/P+S series a local crack in the interface was observed, which propagated 
into the flange towards the support next. Beams of BZ/P series (without reinforcement) were 
characterized by violent delamination along the whole interface, after a diagonal crack reached 
it. At the point of load application in the flange, a vertical crack was formed which increased 
with the diagonal crack, despite the force drop below the value causing the interface crack.

Fig. 3. Crack pattern of representative beams of the BZ/P+S, BZ/S1, and BZ/P series after failure. Source: 
own study

Fig. 4. Crack pattern of BZ/S2/B series with ρi=0.42%: 1 – diagonal crack, 2 – interface crack at the end 
of the beam, 3 – perpendicular cracks at the place of load application. Source: own study
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In the BZ/S1, BZ/S2/A, and BZ/S2/B series, where adhesion was limited or broken, the 
interface crack occurred just in the beginning of loading process and developed from the ends 
of the beams to the supports, joining the diagonal cracks upon reaching the interface. The 
static performance of the S1 and S2 series was very similar, however, due to the mechanical 
adhesion, the S1 series was characterized by higher values of the failure loads. In beams with 
broken adhesion, and with a higher joining reinforcement ratio (BZ/S2/B series), there were 
significantly more vertical cracks under the load locations and in the constant moment zone. 
These cracks as well as the diagonal cracks propagated and increased their width throughout 
the test to create a mixed failure mode – bending with shearing (Fig. 4).

In BZ/P, BZ/S1 and BZ/S2series of beams displacement of the flange and the web in 
relation to each other took place. It was measured using manual gauges with accuracy up to 
0.01 mm located at the ends of the beam. Fig. 5 shows the relationship between the displace-
ment and the applied load. Beams with adhesion and without joining reinforcement (BZ/P 
series) were characterized by a rapid increase of displacement at the moment of the interface 
crack and its intense growth with a slight increase of load. In series with joining reinforce-
ment, but without adhesion (BZ/S1 and BZ/S2 series), the displacement of the components 
occurred, practically from the beginning of the loading process until the beam failure has been 
observed. Larger displacements usually occurred on the failure side of the beam. In the BZ/
S1 series (with limited adhesion) at the load of approximately 80 kN, and in the BZ/S2 series 
(with broken adhesion) at the load of 40 kN (displacement was greater than the sensor range) 
was observed. The maximum displacement in beams with limited and broken adhesion was 
practically the same, observed at the load about 120-130 kN, but higher joining reinforcement 
ratio of the B-series caused that this displacement was growing up gently while on the curve 
corresponding to the A-series the rapid increase in displacement are visible.

Fig. 5. Transverse displacement of the flange and the web in relation to each other on the beam end (a larger 
one from left and right side of the beam). Source: own study
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The main reinforcement strain chart (Fig. 6) shows that only bars of the BZ/S2/B series 
(broken adhesion, greater joining reinforcement ratio) have reached the yield point, which 
has a direct effect on the mixed mode of failure (failure due to shear with bending). Under 
the same adhesion conditions the beams BZ/S2/A series (lower joining reinforcement ratio) 
the yield strength was not reached, the beam was failed by a shear. In the BZ/P+S series 
(adhesion with joining reinforcement) the main reinforcement strain increased linearly 
and reached the highest load value. Also, in the BZ/P series of beams without joining rein-
forcement, a linear increase in strain was observed. It took place until the interface failed 
and was manifested by a rapid load decrease without strain increase. Next, the temporary 
relaxation of steel and resumption of the main reinforcement work in a separated part of 
the beam were observed.

Fig. 6. Strain of the main reinforcement versus applied load, Ts3 strain gauge; εu #14 – strain value corre-
sponding to the yield strength of the main reinforcement. Source: own study

3.2. Deflection
Deflection was measured using linear variable differential transformer gauges 

(LVTD) located in the middle of the beam span and also at the ends for calibration purpose. 
Fig. 7 shows a summary of deflection versus applied load curves representative for the 
beams of each series.
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Fig. 7. Representative beams deflection from each series tested. Source: own study

The curve clearly shows the moment of the interface delamination of BZ/P series, 
manifested by a sharp drop in the load with a large increase in deflection.

In the BZ/P+S series there was also a drop of the curve but under higher load and 
deflection. This indicates the role of the stirrups. The “drop” was followed by enhancement 
– the successive activation of stirrups took place.

BZ/S1 and BZ/S2 beams reached the highest deflection. In BZ/S1 series adhesion was 
limited by the use of anti-adhesive agents, which did not completely remove the adhesion 
(this is confirmed by the analysis of deflection). On the other hand, in the BZ/S2 series, in 
which adhesion was broken by PVC membrane, the deflections are higher with simultaneous 
reduction in the failure force.

3.3. Strain of the stirrups
The stirrups strain gauges were located in the interface level on the outside of the 

perimeter as shown in Fig. 1.
 Comparing the stirrups strains and deflections of the beams in each series (Fig. 8), 

it can be observed that the characteristic points on the deflection diagrams at the moment 
of strain increase in the stirrups correspond to each other. It is shown with arrows in Fig.8.

In the beams of BZ/P+S series, the strain increases in the stirrups (Ts2, Ts5) begins at 
a force of about 55 kN, at which we can also observe the drop of the deflection curve. This 
can be identified with local interface crack. In further stages of loading, the stirrups strain in 
the support zone of BZ/P+S beams increase until the yield strength is reached. It is observed 
that the subsequent stirrups covered by a diagonal crack are engaged and the strain increases 
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until the beam fails by shear. Value of the ultimate load of the beam is equal to the value of 
the load causing the yield of all last stirrup in the constant.  

Attention should be paid to the performance of the transverse reinforcement in the 
support zone in the BZ/S2 series (broken adhesion), in which from the beginning of loading 
process there is an increase in strain noticeable. From subsequent charts it follows that as the 
load increases, further stirrups are activated. There is no uniform distribution of forces in the 
interface, so the stirrups reach the yield strength in sequence. In the BZ/S2/A and BZ/S2/B 
series, the first stirrup reaches the yield strength at the same load (~90 kN), then the next 
second one is activated, etc. Because there are more stirrups on the interface length in the 
BZ/S2/B series (higher reinforcement ratio) it allows beam performance at higher loads, until 
the yield strength of the main reinforcement is fully exploited. Characteristic for the BZ/S1 and 
BZ/S2 series is also activation of the stirrups (Ts4) in the constant moment zone. Stirrups in 
the other beams achieved low levels of strain values in this zone.
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Fig. 8. Comparison of the reinforcement strain and deflection from each series tested; Ts1, Ts2 – stirrups 
on the left side, Ts4 – stirrup in the constant momentum zone, Ts5, Ts6 – stirrups on the right side, 
εu #4 – strain corresponding to the yield strength of stirrups. Source: own study
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4. Analysis of the results

4.1. Dependence between interface crack pattern and failure mechanism 
of beam

The crack pattern of the beams indicates that interface cracks arise at its various places and 
depend on the distribution of internal forces in the interface (values of normal and tangential 
stresses) and on the way the interface was arranged.

In the beams of the BZ/P+S series (with guaranteed adhesion and joining reinforcement), 
the crack in the interface appeared on a short length, at a load value of 47–51% of the ultimate 
load. It was a part of the diagonal crack. Then it passed into the flange and the beam was failed 
by shear in the support zone.

In the BZ/S1 and BZ/S2 series (reinforced interface with limited or without adhesion), 
the interface cracking process was characterized by delamination at the beam ends in the initial 
loading stage. The observed phenomenon was caused by tensile stress, normal to the contact 
surface, arising at the ends of simply supported beams in the four-point bending test. By using 
PVE membrane, the chemical adhesion of the concrete was broken and the tensile normal stress 
prevented the activation of mechanical adhesion. Joining reinforcement remained the main factor 
resulting in the interface ultimate load. In the support zone, the distribution of interface forces 
(shear and compression) and the existence of the transverse reinforcement allowed the transfer of 
loads as a result of mechanical adhesion and the phenomena of shear friction and dowel action. 
Despite the delamination of the ends and cracking of the interface over a considerable length, the 
beams still carried loads but underwent various forms of failure. Depending on the reinforcement 
ratio in the support zone, in BZ/S2/A series (ρi=0.21%), shear failure occurred and in BZ/S2/B 
series (ρi=0.42%), beams were failed in a mixed way by bending combined with shear.

The BZ/P series (guaranteed adhesion, no joining reinforcement) beams behaved differ-
ently. After the cracking stress was reached, the load bearing capacity of the interface was 
lost on the entire length. The beams were destroyed violently by the interface delamination.

Thus, depending on how the interface was formed, the crack pattern and the static 
performance of the composite depends.

4.2. Ultimate load service of the interface according to fib Model-
Code2010

Using the classical equations of the layered structure theory, in order to comparison with 
the data obtained from the tests, the transverse force corresponding to the interface crack and 
its bearing capacity was calculated according to formula (1):

 (1)

 
(2)

where: w0 – is the distance between the centroids of connected layers, Ecp, Ap, Jp and Ecn, An, 
Jn – the modulus of elasticity, the cross-sectional area and moment of inertia of “new” and 
“old” concrete, respectively.
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Using the methodology of the pre-standard fib Model Code 2010, based on the lesser 
of the compressive strength of the components fck,min and the joining reinforcement ratio, the 
interface ultimate load was calculated. The interface in this standard is treated as non-rigid 
when the reinforcement degree ρi ≥ 0.05%. Such conditions correspond to the interface of the 
BZ/P+S, BZ/S1 and BZ/S2 series. Then the ultimate shear stress τRdi is calculated according 
to the formula:  

 (3)

where μ – friction coefficient in the interface, 

Xxxx – to be completed during the formatting process 

10 

when the reinforcement degree ρi ≥ 0.05%. Such conditions correspond to the interface of 
the BZ/P+S, BZ/S1 and BZ/S2 series. Then the ultimate shear stress τRdi is calculated 
according to the formula:   

                  (3) 
  

where μ – friction coefficient in the interface,  – the angle of the joining 
reinforcement to the surface of the interface, ρ – the joining reinforcement ratio, fyd – yield 
strength of the joining reinforcement, fcd – compressive strength of concrete under triaxial 
loading conditions, κ1 and κ2 – coefficients, which take into account the fact that the joining 
reinforcement is subjected to the shear and bending simultaneously, and the relation of 
these stresses depends on the displacement (slip) in the interface. 

In the case of the rigid interface (non-reinforced or if ρi ≤ 0.05%), which corresponds 
to the BZ/P series, the limit shear stress τRdi is described by the equation: 

 
                                              (4) 

where ca – coefficient dependent on the roughness of the surface, μ and σn – as in the 
formula (3). 

 The transverse forces corresponding to the interface ultimate load are summarized in 
Table 2. In order to allow the comparison of calculated and tested loads, the characteristic 
values of concrete compressive fck and tensile fctk 0,05 strength as well as steel yield fyk stress, 
assessed on the basis of Table 1, are applied in equations (3) and (4). The characteristic 
value of the adhesion component crfck

1/3 was calculated regarding safety coefficient γcoh=2,0 
according to [14]. 

The most reliable series in the context of interface ultimate load is BZ/P, because its 
ultimate load depends only on adhesion, without additional effects resulting from the use of 
joining reinforcement. Achievement of the interface ultimate load (interpreted as contact 
delamination over the entire length) is equal to the ultimate load of the entire beam. 

In the other examined beams, the point of the yielding stress in stirrup as the 
achievement of the interface ultimate load was set. 

The above observations show that the standard calculation models for the interface 
ultimate load are applicable to elements subjected to longitudinal shearing alone rather than 
beams working mainly under combination of shear and bending. The local interface 
ultimate load, understood as the achievement of the yielding stress in one stirrup, does not 
cause failure of the beam because the next stirrup (further from the support) is turned on; 
moreover, there is less transverse force, so it can be loading again until the yielding stress 
in the second stirrup will be reached. 

In addition, significant discrepancies in the tested and theoretical values may result 
from the fact that the interface ultimate load was calculated under the standard assumptions 
of the values of the factors ca and cr, moreover, without taking into account the friction 
from normal stresses σn. This indicates the main problem in the description of the behavior 
of reinforced concrete composite beams and, consequently, in the design of such beams. 
This problem is the lack of a precise description of the stress state prevailing in the 
interface of elements working in different schemes and imprecise values of the coefficients. 
To describe the actual behavior of the beam, it is therefore necessary to determine the 
appropriate values of coefficients and to know the complex stress state prevailing in the 
interface. 
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values of concrete compressive fck and tensile fctk 0,05 strength as well as steel yield fyk stress, 
assessed on the basis of Table 1, are applied in equations (3) and (4). The characteristic value 
of the adhesion component crfck

1/3 was calculated regarding safety coefficient γcoh=2,0 accord-
ing to [14].

The most reliable series in the context of interface ultimate load is BZ/P, because its 
ultimate load depends only on adhesion, without additional effects resulting from the use 
of joining reinforcement. Achievement of the interface ultimate load (interpreted as contact 
delamination over the entire length) is equal to the ultimate load of the entire beam.

In the other examined beams, the point of the yielding stress in stirrup as the achievement 
of the interface ultimate load was set.

The above observations show that the standard calculation models for the interface 
ultimate load are applicable to elements subjected to longitudinal shearing alone rather than 
beams working mainly under combination of shear and bending. The local interface ultimate 
load, understood as the achievement of the yielding stress in one stirrup, does not cause fail-
ure of the beam because the next stirrup (further from the support) is turned on; moreover, 
there is less transverse force, so it can be loading again until the yielding stress in the second 
stirrup will be reached.

In addition, significant discrepancies in the tested and theoretical values   may result from 
the fact that the interface ultimate load was calculated under the standard assumptions of the 
values   of the factors ca and cr, moreover, without taking into account the friction from normal 
stresses σn. This indicates the main problem in the description of the behavior of reinforced 
concrete composite beams and, consequently, in the design of such beams. This problem is the 
lack of a precise description of the stress state prevailing in the interface of elements working 
in different schemes and imprecise values   of the coefficients. To describe the actual behavior 
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of the beam, it is therefore necessary to determine the appropriate values   of coefficients and 
to know the complex stress state prevailing in the interface. 

Table 2. Comparison of the forces causing failure and the standard values calculated according to fib Model 
Code 2010. Source: own study

Series

Interface parameters (rough surface) Force F [kN] corresponding to:

ca γcoh cr μ σn 
[MPa]

κ1 κ2
Interface Ultimate Load Beam failure
fib Model 
Code 2010 * Examined Examined***

BZ/P 0.4 - 0.7 0.0 - - 19,0
78.0
72.0
68.0

78.0
72.0
68.0

BZ/P+S - 0.2 0.7 0.0 0.5 0.9 24,0
126.0**
-
142.0**

136.0
149.0
142.0

BZ/S1 - 0.2 0.7 0.0 0.5 0.9 23,6
91.0**
98.0**
86,0**

143.2
137.5
127.3

BZ/S2/A - 0.2 0.7 0.0 0.5 0.9 25,8
95,0**
90,0**
103,0**

126.0
112.0
113.0

BZ/S2/B - 0.2 0.7 0.0 0.5 0.9 36,2
93,0**
110,0**
108,0**

138.0
138.0
134.0

* characteristic and design values from equations (3) and (4) assessed on the basis of Table 1
** force F corresponding to level of the yielding stress achieved locally in the stirrup of the interface
*** force F exerted by the testing machine until stop of increase was observed

5. Conclusions
Based on the studies and analyses carried out, it can be stated that:
1. Achieving the yield strength of successive stirrups in the joint may indicate that the 

local interface ultimate load has been reached, however, it does not determine the 
beam ultimate load.

2. The standard models for the interface ultimate load calculation are applicable to 
elements subjected to longitudinal shearing alone rather than beams working mainly 
under combination of shear and bending. The achievement of the yielding stress in 
stirrup assumed in this model as the reason of joint failure means the local failure 
only. Then the next stirrup is turned on and the increase of load is possible.

3. The examination of beams with limited or broken adhesion in the interface allowed 
to conclude that:

a. Joining reinforcement remained an important factor resulting in the interface 
ultimate load in non-rigid connection. This reinforcement allows the transfer 
of loads between connected parts due to the phenomena of shear friction and 
dowel action. Despite the delamination in the interface the beams still carried 
loads but underwent various forms of failure.

b. In beams with a higher joining reinforcement ratio (BZ/S2/B series), there 
were significantly more vertical cracks under the load locations and in the 
constant moment zone than in the BZ/S2/A beams with lower reinforcement 
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ratio. Increasing the joining reinforcement ratio may change the failure mode. 
The BZ/S2/A series beams (lower joining reinforcement ratio) failed by shear, 
whereas in the BZ/S2/B series the mixed mode of failure (failure due to shear 
with bending) was observed.

c. Higher joining reinforcement ratio of the B-series caused that displacement of 
connected parts in relation to each other was growing up gently while on the 
curve corresponding to the A-series the rapid increase in displacement was 
observed.

d. In spite of the eliminated adhesion in the interface of the BZ/S2/B series (with 
higher degree of the stirrups) the ultimate load was achieved similar to the level 
obtained by the beam with adhesion in the interface.
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