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Abstract: In the presented study multi-year time series of changes in the L1 pseudo-range 
multipath are analysed. Data from 8 stations of the EUREF Permanent Network (EPN) were used 
in the study. Periodic components present in the signal and their stability over time were analysed. 
Also, the type of background noise was determined, based on the spectral index. In some cases, 
the presence of weak components with a 1/2 and 1/3 of the Chandler period has also been found. 
Time-frequency analysis shows that periodic signals are not stationary in most of the examined 
cases, and particular signal components occur only temporarily. The analysed signals were char-
acterised by pink noise in the lower frequency range and by white noise for higher frequencies, 
which is also characteristic for time series of coordinates obtained from GNSS measurements.

Keywords: GNSS, code multipath, spectral analysis, spectral index

Introduction
GNSS multipath is studied mainly as a source of errors affecting code and phase obser-

vations in positioning. The impact of multipath on GNSS data is widely analysed in both time 
and frequency domain [1][2][3]. The magnitude of the pseudo-range measurement error caused 
by multipath can be determined based on linear combinations of code and phase observations 
[4]. The impact of multipath on phase observations is estimated based on changes in signal 
power reaching the GNSS receiver (signal to noise ratio) [5][6][7].

The analysis of the multipath phenomenon applies, among others in GNSS reflectometry, 
where it is often used to study the change in the environment of the GNSS antenna. Periodic 
oscillations in the multipath are the basis for determining the change in the position of the surface 
reflecting the satellite signal about the phase centre of the antenna. Multipath oscillations analyses 
allow assessing changes in snow cover thickness [8], ocean surface [9][10], and soil moisture [11].

At EPN/IGS reference stations, indices of the multipath are routinely monitored [12]
[13], with basic statistical parameters characterising the variability of the multipath for daily 
observations on individual carrier frequencies being mainly calculated. For this purpose, 
software such as G-Nut/Anubis [14] or teqc [15] is used.

Apart from short-term changes, the multipath is also characterised by seasonal variability, 
resulting from annual changes in vegetation, soil moisture, and snow or ice layer thickness. 
Therefore, when analysing the long time series of multipath, one should expect components 
with a period close to one year. Since the value of the error caused by multipath is also affected 
by the position of the antenna relative to reflecting obstacles, even small changes in the position 
of the antenna can also cause changes in indices describing the multipath.
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In this work, multi-year time-series of indices characterising GNSS multipath for 8 Euro-
pean permanent stations belonging to the EPN/IGS network (Fig. 1) were analysed in terms of 
the occurrence of periodic components. The analysed time-series of L1 code multipath were 
obtained using freely available teqc software.
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The multi-year time series were created on the base of the root mean square of mp1 index 
from daily observations. The calculated value of mp1 depends on many factors. In addition to 
the phenomenon of interference of signals arriving in different ways, the mp1 is affected by 
changes caused by the replacement of the antenna, receiver or firmware upgrade. A change in 
the configuration of the measuring equipment can cause a jump in the value of mp1 as well as 
a change in the noise level or amplitude of the examined signal. There may also be data gaps 
in the time series due to the temporary inactivity of the reference station [12][13]. 

For research purposes, 8 permanent stations were selected from Europe (Fig. 1) with the 
longest continuous observation possible and the smallest number of changes in equipment in 
the analysed period. Data in RINEX format comes from the EUREF Permanent Network data 
centres, and daily RMS mp1 values   have been calculated using teqc software.

The main goal of the research was to verify the occurrence of the characteristic periodic 
components in the mp1 times series. Before the spectral analysis, data preprocessing had to be carried 
out. For this purpose, the jumps in value, the linear trend and outliers (> 5
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The main goal of the research was to verify the occurrence of the characteristic periodic

components in the  mp1 times series. Before the spectral analysis, data preprocessing had to be

carried  out.  For  this  purpose,  the  jumps in  value,  the  linear  trend and outliers  (> 5)  were

removed from the obtained mp1 time series, which caused additional data gaps in the time series.

Due to discontinuity in the observational data, the method of Lomb-Scargle periodogram was

used. This method is effective for spectrum analysis in the case of non-evenly data sampling [16]

[17]. The existence of predetermined periodic components in the signal has not been assumed in

the paper. Based on the spectrum obtained, the presence of components with the tropical year

period (356.25 days) and the Chandler wobble period (433 days) and their  three subsequent

harmonics were verified.

For GNSS observations,  the time series of coordinates are most often analysed [18].

Based on the power-law P∝ f k , where P is power spectral density, f is the frequency and k

spectral  index,  it  can  be  shown  that  in  this  type  of  observation,  background  noise  is  a

combination of pink noise and white noise [19][20]. 

In this work, for the background noise determination, the spectral index k was estimated

based on fitting a straight line to the power spectral density expressed on a logarithmic scale.

The verification of stationarity in the frequency domain was performed with wavelet transform,

a  widely  used  tool  for  the  characterisation  of  frequency  variations  in  the  signal  [21]  that

preserves information on both the time and frequency of the signal. Individual harmonics in the

examined time series were analysed using the continuous wavelet time-frequency spectrum with

a complex Morlet wavelet.
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f k, where P is power spectral density, f is the frequency and k spectral 
index, it can be shown that in this type of observation, background noise is a combination of 
pink noise and white noise [19][20]. 

In this work, for the background noise determination, the spectral index k was estimated 
based on fitting a straight line to the power spectral density expressed on a logarithmic scale. 
The verification of stationarity in the frequency domain was performed with wavelet trans-
form, a widely used tool for the characterisation of frequency variations in the signal [21] that 
preserves information on both the time and frequency of the signal. Individual harmonics in 
the examined time series were analysed using the continuous wavelet time-frequency spectrum 
with a complex Morlet wavelet.
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Results
The studied RMS mp1 time series covered a period from 13.2 to 20.6 years. At the prepro-

cessing stage, some outliers were removed from the time series obtained directly as a result 
of the calculations (eq. 1). Depending on the permanent station, between 3% and 26% of the 
original data was deleted. Based on spectral analysis, the occurrence of annual components 
was determined at the significance level of 95%. In the case of the BACA, BOLG, DELF and 
WSRT stations, in addition to the annual component and its higher harmonics, weak signals of 
1/2 or 1/3 of the Chandler period are visible (Fig. 3). These weak signals of small amplitude, 
which appeared in the mp1 spectrum require further research. The summary of data regarding 
the time series for each permanent station tested are presented in Table 1. 

Fig. 2a. Time series of RMS of mp1 parameter (left column), frequency spectrum with spectrum indices 
(middle column) and continuous wavelet time-frequency spectrum (right column) for 4 GNSS 
stations AQUI, AUT1, BACA and BOLG
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Fig. 2b. Time series of RMS of mp1 parameter (left column), frequency spectrum with spectrum indices (middle 
column) and continuous wavelet time-frequency spectrum (right column) for 4 GNSS stations DELF, 
JOEN, LROC and WSRT

All the analysed stations show power-law behaviour in the entire spectrum. It was 
estimated a corner frequency equals 6 cycles per year (cpy) between the low-frequency part 
where pink noise appears and the higher frequency with dominating uncorrelated white noise. 
Spectral indices k1 and k2 were calculated, by dividing the frequency range into two parts, 
relative to the corner frequency: k1 – below 6 cpy and k2 – above 6 cpy (middle column in 
Figures 2a and 2b). In most cases, the background noise in the low-frequency part of the 
spectrum is close to pink noise, and as the frequency increases, the noise character becomes 
white noise (-1.5 < k1 < -0.5 < k2). For the AQUI and JOEN stations, pink noise is dominant 
in the entire frequency range. Table 1 summarises the values   of spectral indices k1 and k2 for 
the permanent stations analysed.
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Time-frequency analysis clearly shows the non-stationarity of long-term multipath 
changes. In most of the analysed cases, components with an annual period and its higher 
harmonics appear only in a part of the examined time interval (Fig. 2a and 2b – right 
column). It may be the result of changes in the station’s equipment configuration or changes 
in the close vicinity of the antenna. Determining precisely the cause of the change in the 
multipath effect is difficult because not all events that may affect this factor are recorded in 
the station’s logs. For example, for the AQUI stations, the dominant annual component is 
visible in 2004-2006, 2009-2011 and 2014-2019. In the case of the WSRT station, a strong 
annual signal appears in the years 2004-2012. Only for the DELF stations, where the 
antenna and the receiver remain unchanged for the majority of the analysed time interval 
(2004-2015), can a constant, clear annual component be seen. After changing the antenna at 
the DELF station in 2015, the correlated change in the time-frequency spectrum is visible. 

Conclusions
The time series of the mp1 parameter describing the signal’s multipath in the observed 

L1 code was analysed. For the analysis 8 GNSS permanent stations from Europe were 
chosen. The frequency spectrum obtained with the Lomb-Scargle periodogram indicates 
the presence of 1 cpy frequency components and some higher harmonics. In the signal 
spectrum from several reference stations, the second and third harmonic of the Chandler 
frequency are also visible. The annual component has been expected because it reflects 
seasonal changes in the vicinity of the GNSS antenna. The occurrence of the Chandler 
wobble period in the mp1 time series requires detailed research. Background noise in the 
obtained spectrum can be described as pink noise for lower frequencies and white noise 
for frequencies above 6 cpy. A similar distribution of noise in the spectrum is also char-
acteristic for GNSS coordinate time series. Time-frequency analysis allows confirming 
non-stationarity and high variability of signal parameters over time. It is caused mainly 
by the equipment replacement in the reference stations and modification of the operating 
parameters of the receivers.
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Fig. 3. Periodograms of RMS of daily mp1 parameter for the BACA, BOLG, DELF and WSRT stations. 
Orange (dash-dot) vertical lines correspond to the yearly period and its first three harmonics. Green 
(dash) vertical lines correspond to the Chandler wobble period and its first three harmonics

Acknowledgements
This work has been supported by AGH-UST statutory research no 16.16.150.545. Calcu-

lations were made with NumPy [22], Pandas [23] and PyWavelets [24] Python packages. The 
Figures were prepared with Python Matplotlib Library [25].

References
[1] Yang, C., & Porter, A., “Frequency-domain characterization of GPS multipath for estimation and 

mitigation”, in Proceedings of the 18th International Technical Meeting of the Satellite Division 
of The Institute of Navigation, ION GNSS 2005, 2005, pp. 2104–2118.

[2] Kong, X., “GPS modeling in frequency domain”, in The 2nd International Conference on Wireless 
Broadband and Ultra Wideband Communications, AusWireless 2007. https://doi.org/10.1109/
AUSWIRELESS.2007.36

[3] Zuo, X., Bu, J., Li, X., Chang, J., & Li, X., “The quality analysis of GNSS satellite positioning 
data”,  Cluster Computing, 22, 2019, pp. 6693–6708. https://doi.org/10.1007/s10586-018-2524-1

[4] Breivik, K., Forssell, B., Kee, C., Enge, P., & Walter, T., “Estimation of multipath error in GPS 
pseudorange measurements”. Navigation, Journal of the Institute of Navigation, vol. 44(1), 2019, 
pp.43–52. https://doi.org/10.1002/j.2161-4296.1997.tb01938.x

[5] Rost, C., & Wanninger, L. “Carrier phase multipath mitigation based on GNSS signal quality 
measurements”, Journal of Applied Geodesy, 3(2), 2009. https://doi.org/10.1515/jag.2009.009

[6] Axelrad, P., Comp, C., & MacDoran, P., “Use of signal-to-noise ratio for multipath error correction 
in GPS differential phase measurements: methodology and experimental results”, in Proceedings 
of ION GPS, 1, 1994, pp. 655–666.

https://doi.org/10.1109/AUSWIRELESS.2007.36
https://doi.org/10.1109/AUSWIRELESS.2007.36
https://doi.org/10.1007/s10586-018-2524-1
https://doi.org/10.1002/j.2161-4296.1997.tb01938.x
https://doi.org/10.1515/jag.2009.009


Jacek Kudrys22

[7] Bilich, A., & Larson, K. M., “Mapping the GPS multipath environment using the signal-to-noise 
ratio (SNR)”. Radio Science, 42(6), 2007. https://doi.org/10.1029/2007RS003652

[8] Yu, K., Ban, W., Zhang, X., & Yu, X., “Snow depth estimation based on multipath phase combi-
nation of GPS triple-frequency signals”. IEEE Transactions on Geoscience and Remote Sensing, 
vol. 53(9), 2015, pp. 5100–5109. https://doi.org/10.1109/TGRS.2015.2417214

[9] Komjathy, A., Armatys, M., Masters, D., Axelrad, P., Zavorotny, V., & Katzberg, S., “Retrieval of 
ocean surface wind speed and wind direction using reflected GPS signals”, Journal of Atmospheric 
and Oceanic Technology, vol. 21(3), 2004, pp. 515–526. https://doi.org/10.1175/1520-0426(2004
)021<0515:ROOSWS>2.0.CO;2

[10] Kim, S. K., & Park, J., “Monitoring sea level change in arctic using GNSS-reflectometry”, 
in ION 2019 International Technical Meeting Proceedings, 2019, pp. 665–675. https://doi.
org/10.33012/2019.16717

[11] Chang, X., Jin, T., Yu, K., Li, Y., Li, J., & Zhang, Q., “Soil moisture estimation by GNSS multipath 
signal”. Remote Sensing, vol. 11, 1st November 2019. https://doi.org/10.3390/rs11212559

[12] “EUREF Permanent GNSS Network”. Available: http://epncb.eu/ [Accessed: 05 Jan 2020]
[13] “International GNSS Service”. Available: http://www.igs.org/ [Accessed: 05 Jan 2020]
[14] Vaclavovic, P., & Dousa, J., “G-Nut/Anubis – open-source tool for multi-GNSS data monitoring”, in: 

IAG Symposia Series, Springer, vol. 143, 2016, pp. 775-782. https://doi.org/10.1007/1345_2015_157
[15] Estey, L. H., & Meertens, C. M., “TEQC: The Multi-Purpose Toolkit for GPS/GLONASS Data”, 

GPS Solutions, 3(1),1999,  pp. 42–49. https://doi.org/10.1007/PL00012778
[16] Lomb, N. R., “Least-squares frequency analysis of unequally spaced data”. Astrophysics and Space 

Science, 39(2), 1976, pp. 447–462. https://doi.org/10.1007/BF00648343
[17] Scargle, J. D., “Studies in astronomical time series analysis. II – Statistical aspects of spectral 

analysis of unevenly spaced data”, The Astrophysical Journal, 263, 1982, p. 835. https://doi.
org/10.1086/160554

[18] Klos, A., Bogusz, J., Bos, M. S., & Gruszczynska, M., “Different Approaches to Extract Seasonal 
Signals” in Modelling the GNSS Time Series. Springer International Publishing, 2020. https://doi.
org/10.1007/978-3-030-21718-1_7

[19] Bogusz, J., & Klos, A., “On the significance of periodic signals in noise analysis of GPS station 
coordinates time series”. GPS Solutions, 20(4), 2016, pp. 655–664. https://doi.org/10.1007/
s10291-015-0478-9

[20] Ray, J. D., Vijayan, M. S. M., Godah, W., & Kumar, A., “Investigation of background noise in the 
GNSS position time series using spectral analysis – A case study of Nepal Himalaya”. Geodesy 
and Cartography, 68(2), 2019, pp. 375–388. https://doi.org/10.24425/gac.2019.128468

[21] Torrence Christopher, & P. Compo Gilbert., “A Practical Guide to Wavelet Analysis”. Bulletin of 
the American Meteorological Society, 137(2), 1998, pp. 87–92. https://doi.org/10.1175/1520-047
7(1998)079<0061:APGTWA>2.0.CO;2

[22] Stéfan van der Walt, S. Chris Colbert and Gaël Varoquaux, “The NumPy Array: A Structure for 
Efficient Numerical Computation”, Computing in Science & Engineering, 13, 2011, pp. 22-30, 
https://doi.org/10.1109/MCSE.2011.37

[23] Wes McKinney, “Data Structures for Statistical Computing in Python”, in Proceedings of the 9th 
Python in Science Conference, 2010, pp. 51-56

[24] Lee et al., “PyWavelets: A Python package for wavelet analysis”. Journal of Open Source Software, 
4(36), 2019,  p. 1237. https://doi.org/10.21105/joss.01237

[25] John D. Hunter, “Matplotlib: A 2D Graphics Environment”, Computing in Science & Engineering, 
vol. 9, 2007, pp. 90-95. https://doi.org/10.1109/MCSE.2007.55

https://doi.org/10.1029/2007RS003652
https://doi.org/10.1109/TGRS.2015.2417214
https://doi.org/10.1175/1520-0426(2004)021<0515:ROOSWS>2.0.CO;2
https://doi.org/10.1175/1520-0426(2004)021<0515:ROOSWS>2.0.CO;2
https://doi.org/10.33012/2019.16717
https://doi.org/10.33012/2019.16717
https://doi.org/10.3390/rs11212559
http://epncb.eu/
http://www.igs.org/
https://doi.org/10.1007/1345_2015_157
https://doi.org/10.1007/PL00012778
https://doi.org/10.1007/BF00648343
https://doi.org/10.1086/160554
https://doi.org/10.1086/160554
https://doi.org/10.1007/978-3-030-21718-1_7
https://doi.org/10.1007/978-3-030-21718-1_7
https://doi.org/10.1007/s10291-015-0478-9
https://doi.org/10.1007/s10291-015-0478-9
https://doi.org/10.24425/gac.2019.128468
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
https://doi.org/10.1109/MCSE.2011.37
https://doi.org/10.21105/joss.01237
https://doi.org/10.1109/MCSE.2007.55

