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Abstract 
 

This paper studies the question of plurality of mathematical styles, i.e., whether a funda-

mental mathematical work is characterised by a single style or by a multitude of styles; 

and, whether the unity of a subject in mathematics in its development is the outcome of 

a single style or several styles. The question is studied (a) within a single mathematical 

work and (b) through the study of the same problem over time and illustrated on Mene-

laus’s Sphaerica and the isoperimetric problem. 
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Introduction 
 

Historians of science agree that one of their main tasks is the reconstruction 

of scientific traditions. The task may seem easy because most traditions are 

represented by prominent names and distinctive features that make them 
recognisable. However, as soon as they are engaged in this task, they dis-

cover that it is a deceptive appearance that dissipates. Isn’t it a characteristic 
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of a scientific tradition to diversify and recreate itself according to the suc-
cession of the various authors and the rise of novel questions, thereby 
thwarting any reconstruction attempts? 

During the last century, in their attempt to describe and analyse these 
facts, some philosophers of science have forged certain concepts, such as the 
Denkform by Ernst Cassirer (1874–1945), the “normal science” by Thomas 
Kuhn (1922–1996), the épistémè by Michel Foucault (1926–1984), and 
others. 

Gilles-Gaston Granger (1920–2016), who had vast experience in the his-
tory of economics and the variety of schools that exercise it, deep knowledge 
of social mathematics going back to Marquis de Condorcet (1743–1794) and 
significant contribution to linguistics, has found in the concept of style a heu-
ristic means to delineate traditions and carve out styles within a single tradi-
tion. This enables us to grasp the type of rationality that characterises each 
style. Indeed, it was due to the concept of style, which has proven valuable in 
literature and art history. Behind the variety of forms and mutations that 
shape a tradition, we can grasp those elements which characterise a style 
and define its identity. However, this undoubtedly perceptible, although 
fleeting and elusive note, remains to be heard, which alone makes it possible 
to put an individual work into perspective and grasp its meaning. 

One tradition can then be distinguished from others. For example, we can 
distinguish the tradition of the method of indivisibles from the other tradi-
tions of infinitesimal mathematics of the 17th century or that of the marginal-
ists from other economic traditions of the 19th and 20th centuries (such as 
those of Karl Marx or Alfred Marshall). 

Through style, one can also isolate different currents within the same 
tradition (Bonaventura Cavalieri and Gilles de Roberval, in the first case; 
William Stanley Jevons and Léon Walras in the second case), or in a single 
work, when one identifies the traces of different traditions. Thus, we avoid 
the analogy and the global viewpoint that crushes differences to see only 
similarities. 

 
1. Granger’s Definition of Mathematical Style  
 
If we confine ourselves to the history of mathematics, Granger defines the 
concept of mathematical style in the following way: 
 

The style appears to us here on the one hand as a way of introducing the concepts of 
a theory, of connecting them, of unifying them; and on the other hand, as a way of de-
limiting what intuition contributes to the determination of these concepts (Granger, 
1968, 20). 
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To illustrate this definition, he studied several geometric examples, 

which he calls by the names of individual mathematicians, each of whom 

embodies the relevant geometric style: Euclidean, Cartesian, Desarguian, 

Grassmannian. Naturally, the whole study is done with precision and talent. 

I want to start with Granger’s definition to pose the question of the plu-

rality of styles. The question is whether a fundamental mathematical work is 

distinguished by a single style or by several styles, and, on the other hand, 

whether the unity of a subject of mathematics during its evolution lies in one 

style or is an outcome of several styles. I, therefore, pose this question of the 

plurality of styles, firstly, within the same mathematical work, secondly, 

through the study of the same problem over the centuries. For the funda-

mental work, I chose the Sphaerica of Menelaus of Alexandria, and for the 

problem, I took the isoperimetric problem. The subject of study is the circle 

and the sphere in both cases. 

 
2. The Style of Menelaus’s Sphaerica 
 
Menelaus of Alexandria (c. 70–40 CE) wrote a treatise entitled Sphaerica 
(Spherics) following the model of Euclid’s Elements, that is, by chaining the 

propositions in a rigorous logical order. In this work, he studies the geome-

try of the sphere per se, not only in the physical three-dimensional solid, as in 

the Elements. Menelaus, unlike Euclid, examines the intrinsic properties of 
a spherical surface. In other words, he studies the geometry of the sphere as 

a chapter of solid geometry that his predecessors developed. He mainly fo-

cuses on the properties of duality and polarity, properties that do not char-
acterise plane figures. 

In his study, Menelaus admits Euclid’s axioms and postulates, except for 

the fifth, the Parallel Postulate. He adopts the Euclidean definitions of geo-
metric concepts, i.e., the definitions of the sphere, its centre, its circles, its 

diameters, its poles, etc., and adds three new definitions: those of the spheri-

cal triangle, the quadrangle figures on the sphere, and the right, acute and 

obtuse angles on the sphere. 

If the definition of Granger already mentioned is invoked in this regard, 

the “way of introducing the concepts of a theory” is here quite different from 

that of Euclid, for, in this new geometry, the sum of the angles of any spheri-

cal triangle is greater than two right angles, disjoint lines do not exist, and 

any two lines intersect into two points. This case is certainly no longer the 

“style” of Euclidean plane geometry nor that of the stereometric books of 
Euclid’s Elements. 
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From a mathematical point of view, this geometry is intimately linked to 

hyperbolic geometry, invented more than a millennium and a half later. It 

took centuries for the spherical geometry to be grounded on a system of 

axioms. 

If we now consider the second part of Granger’s definition, “a way of de-
limiting what intuition contributes to the determination of these concepts,” 
again the style of Menelaus proceeds from that of Euclid: in fact, Menelaus 
banishes from spherical geometry the use of demonstration by reductio ad 
absurdum and keeps only the direct demonstration; moreover, he rejects the 
Euclidean demonstration by application of areas. 

In short, in Menelaus’s spherical geometry, we face the first non-Eu-
clidean geometry, built from Euclid’s axiomatic but excluding the Parallel 
Postulate and two methods of demonstration. Is it possible to discuss the Eu-
clidean style, appropriately identified by Granger with the plane-geometric 
Books of the Elements? Certainly not. However, to describe the style of Mene-
laus as non-Euclidean would be a little stretched since he preserves what 
Euclid had abandoned. Thus, we face a mixture of two styles, a combination 
of the Euclidean style with some variety of non-Euclidean style. It could have 
been the first intuitionist style if Menelaus had always derived his construc-
tions solely from the definitions. However, he sometimes does things differ-
ently, for example, in the first Proposition of his Book, which deals with the 
construction of an angle equal to a given angle. Unlike most of the proposi-
tions in Menelaus’s Sphaerica, this proposition is proven based on Euclid’s 
solid geometry; therefore, it is not a demonstration of spherical geometry. 
The reason is that Menelaus gives the Euclidean definition of the angle: the 
angle between two sides of a triangle at the top is a dihedral angle formed 
by the two planes that contain both sides; this requires starting with a Eu-
clidean-style construction. So we cannot talk about a single style but a mix-
ture of two styles, the second of which is not still perfectly advanced. This 
combination is imposed by the nature of the object studied by Menelaus: the 
sphere, regardless of the physical space. 

 

3. The Question of the Plurality of Styles 

 

I now turn to the second part of the question of plurality of styles, to the 

problem of the conceptualisation of the style of the same object throughout 

history. This time I borrow my example from geometry to stay close to Gran-

ger’s choices. The examination of the isoperimetric problem allows us to see 

the succession of several styles, which fit together during the study of the 

same mathematical subject. 
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There are several reasons for the choice of the isoperimetric problem: 
 

1. As already said, this problem belongs to the area from which Granger 

chooses his examples. 

2. It concerns an ancient problem, like the example of Euclid chosen by 

Granger. 
3. This is an example of the search for extremity values, hence its difficulty. 
 

In a word, it is about to show that, of all the plane figures of a given   

perimeter, the circle—that is, the disk—has the greatest area; and that, of all 

the solids with the same total surface area, it is the sphere that has the great-

est volume. 

 
3.1. The Cosmological Style 

 
At first glance, the search for extremity values was interesting to as-

tronomers. They needed them to establish the sphericity of the heavens and 

the size of the world, to show the absolute perfection of their form. Mathe-

maticians were called to demonstrate these properties and establish this 
cosmological fact. Moreover, this proposition about the circle and the sphere 

is intuitively evident, so that it may seem pointless to give a demonstration. 

However, the “delimitation of the intuitive contribution in the determination 
of concepts,” as Granger says, has proven to be a very long and challenging 

task. I will outline his achievements briefly. 

In any case, the problem of isoperimetric and isepiphanic figures appears 

to have a long history related to the cosmological perspective; this perspec-

tive made the problem perpetual and fruitful. Its wide diffusion is undoubt-

edly due to the revival of the first book of the Almagest and its commentary 

by Theon of Alexandria. 

Ptolemy presents as an achievement of geometry the following result: 

 
Since, among different figures with equal perimeter, those with more sides are 

greater, the circle is the greatest of the plane figures, and the sphere is the greatest of 

the solids, and the heavens are the greatest of the bodies (Heiberg 1898, 13, lines 

16-19). 

 

However, he provides no proof. The commentators of the Almagest, since 

Theon of Alexandria, could no longer ignore such a formula without provid-

ing proof. Other mathematicians have shown interest in this problem, such 
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as Heron of Alexandria and Pappus of Alexandria, in the fifth book of The 

Collection.1 

Two relatively late testimonies agree on the attribution of the study of 

this problem to Zenodorus. 

The first testimony comes from Theon of Alexandria, who states: 

 
We will prove this in an abbreviated way, drawn from Zenodore’s demonstrations 

in his treatise On Isoperimetric Figures (Περὶ ἰσοπεριμέτρων σχημάτων) (Théon 1936, 

33). 

 

The second comes from Aristotle’s commentator, Simplicius, who writes: 

 
It has been demonstrated, at least before Aristotle, whether it is true that he uses it as 

a proven truth, and by Archimedes, and in more detail by Zenodorus that among the 

isoperimetric figures the greatest is, among the plane figures, the circle, and among 

the solid figures, the sphere (Heiberg 1894, 412, lines 12-17). 

 

Traces of the study of isoperimetric figures in Aristotle or Archimedes 

were searched for in vain. Simplicius agrees with Theon in attributing Ze-
nodorus of the first extensive study. Zenodorus lived, most probably, after 

Archimedes and before Pappus and Theon; he must have lived between the 

2nd century BC and the first half of the 4th century. Pappus (first half of the 4th 

century) quotes the first proposition from Zenodorus’s book, and Theon 

(second half of the same century) summarises this book. However, the inac-

curacy concerning Zenodorus’s life dates prevents us from knowing with 

certainty whether the latter had written his treatise to justify Ptolemy’s not 
yet demonstrated assertion. 

 
3.2. Al-Khāzin’s Geometric Style 
 

Theon’s text, which reports Zenodorus’s results, and the Almagest were 

known in their Arabic translation by the 9th-century mathematicians and 

astronomers of Baghdad who initiated a new tradition of geometric re-

search, notably by the philosopher and scholar al-Kindī. However, al-Khāzin 

and Ibn al-Haytham are recognised today as the leading representatives of 

this tradition. (Rashed 1993). The analysis of the works of these two math-

ematicians reveals a great distance between them. 

 
1 Cf. P. Ver Eecke’s translation (1933, I, 239 sq.). 
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Al-Khāzin is a mathematician of the first half of the 10th century. He is 

known for his work in algebra and the Diophantine analysis for integers. 

He also starts with Ptolemy’s quotation in his study of isoperimetric and 

isepiphanic figures. He proposes establishing Ptolemy’s result not by compu-

tation but by using geometry. The guiding idea, of which al-Khāzin seems to 

be fully aware, is that of all convex figures of a given type (triangles, parallel-

ograms, rhombuses, etc.), the more symmetrical one assumes an extremum 

for a certain magnitude (area, area ratio, perimeter, etc.). He proceeds in the 

following way: he fixes a parameter and varies the figure keeping it sym-

metrical about a definite straight line. Thus, by fixing the parallelogram’s 

perimeter, he transforms it into a rhombus, keeping it symmetrical about its 

diagonal; the area increases in the process. With the help of several lemmas, 

al-Khāzin establishes the isoperimetric property of the regular polygons 

before finally passing over the theorem on a circle. He then shows the isepi-

phanic property with the help of regular polyhedra: 
 

Of all the convex solids with the same area, the sphere is the one with the greatest vol-

ume (Rashed 1996, 798). 
 

We view in al-Khāzin two transformations: one is that of the object, the 

other is that of the style. Henceforth, the circle does not belong to the domain 

of plane geometric figures but falls under a class of them: the class of convex 

figures. Similarly, the sphere belongs to the class of convex solids. The style 

is no longer geometric in the broad sense, but it focuses on the inequalities 

necessary to research the geometry of convex domains. This research on the 

properties of convex figures will be one of the main themes of this subject 

throughout its history. 
 

3.3. Ibn al-Haytham’s Infinitesimalistic Style 

 

About half a century later, the mathematician Ibn al-Haytham (d. after 1040) 

devoted a voluminous treatise to this problem. This treatise belongs to     

a series of works on the quadrature of curved surfaces and the cubature of 
solid curves. The mathematical context is no longer the same: it is shifted to 

the extremal properties of which Ibn al-Haytham was interested and, to 

study them, he combines infinitesimal methods and methods of projections. 

He departs from his predecessor in search of a “dynamic” demonstration. 
He then wrote his treatise on isoperimetric figures, which was at the fore-

front of contemporaneous mathematical research and for the following sev-

eral hundred years. 
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Ibn al-Haytham begins with a quick examination of the case of plane fig-

ures. Just like his predecessor al-Khāzin, he compares regular polygons of 

the same perimeter and several different sides and demonstrates that 

 
i. There are two regular polygons of the same perimeter; the one with the 

greatest number of sides has the greatest area. 

ii. If a circle and a regular polygon have the same perimeter, then the area of 

the circle is greater than that of the polygon. 

 
Unlike all his predecessors, Ibn al-Haytham uses the first property to es-

tablish the second, considering the circle as the limit of a sequence of regular 

polygons. He uses the properties of the upper bound; it is in this that his 

approach is “dynamic.” It is noteworthy that in his demonstration, he as-

sumed the existence of the boundary—the area of the disc—which Archi-

medes obtained in his Measurement of a Circle. 

The second part of his treatise is devoted to isepiphanic figures. It opens 

with ten lemmas, which constitute the first proper treatise in the history of 

mathematics on the solid angles, which I will pass over in silence. In any 

case, these lemmas allow him to establish the following two propositions: 

 
1. Of two regular polyhedra with similar faces and the same total area, the 

one with the greatest number of faces has the greatest volume. 

2. Of two regular polyhedra with similar regular polygon faces inscribed in 

the same sphere, the one with the greatest number of faces has a greater 

area and greater volume. 

 
Therefore, we observe that Ibn al-Haytham starts from the regular poly-

hedra. The two propositions I have just mentioned apply only to the case of 

tetrahedron, octahedron, and icosahedron since the number of faces of 

a regular polyhedron with square or pentagonal faces is fixed (6 or 12). 

However, Ibn al-Haytham’s intention is clear from the above: from the com-

parison between polyhedra of the same area and a different number of faces, 
establishes the extremity of the sphere, i.e., approaches the sphere as the 

limit of a sequence of inscribed polyhedra. Nevertheless, this dynamic ap-

proach clashes with the finitude of the number of regular polyhedra, and  

I claim this fact remains incomprehensible on the part of a great mathemati-
cian, who knew Euclid’s Elements better than anybody else. Nevertheless, 

this failure is compensated by a great success: the solid angle theory. 
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Ibn al-Haytham’s treatise is far from the two previous styles, the cosmo-

logical and the geometric. Moreover, Ibn al-Haytham undertakes another 

study on the extremities in this new spirit. He compares different convex 

curves in a circular segment, considering that the length of each curve is the 

upper bound of the inscribed polygons, thus reducing the comparison be-

tween the curves to that between the polygons. 

With Ibn al-Haytham, the extremal properties of figures and solids are 

studied, to which are now added those of the curves. The style changes ac-

cordingly and becomes infinitesimalistic on convex objects. 

 
3.4. The Style of the Calculus of Variations 

 
Going even further than Ibn al-Haytham was not possible until the founda-

tion and the rise of differential calculus at the very end of the 17th century 
and the beginning of the 18th century, or more precisely with the first steps 

of the calculus of variations. The isoperimetric problem will continue to 

change form and become a problem for finding a curve, or a family of curves, 

that makes maximum or minimal the magnitude associated with each curve 

of a given set of curves. This problem started with Johann Bernoulli’s (1667–

1748) challenge of the mathematicians in June 1696 in a form that repro-

duces the famous brachistochrone problem: 

 
Given two points A and B in a vertical plane, what is the curve traced out by a point 

acted on only by gravity, which starts at A and reaches B in the shortest time? (Ber-

noulli 1696, 269)2 

 

Jacques Bernoulli had shown in 1697 that this curve is a cycloid (Ber-

noulli 1697, 211). 

The isoperimetric problem is better studied on a different ground than 

the original cosmological perspective. This latter approach had run out, as 
we showed with al- Khāzin and transformed with Ibn al-Haytham. With the 

Bernoulli brothers, it is already a problem of calculating variations that their 

successor, Euler and afterwards Lagrange, will establish. Indeed, the study of 

 
2 “Datis in plano verticali duobus punctis A et B, assignare mobili M viam AMB, per 

quam gravitate sua descendens, et moveri incipiens a puncto A, brevissimo tempore per-

veniat ad alterum punctum B.” (Given in a vertical plane two points A and B, assign to the 

moving [body] M, the path AMB, by means of which—descending by its own weight and 

beginning to be moved [by gravity] from point A—it would arrive at the other point B in 

the shortest time). 
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the preceding problem and those investigated by the calculus of variations 

led to differential equations for each problem found by Euler. The latter at-

tempted to resume the problems and unify the methods of solution. Thus, 

the considered problem appears to require the determination among    

the curves the length 1L y dx= + for which the area ydx  is maximal 

(Euler 1744). However, an extremum may not be found when none of the 

curves of the solution gives an extremum. The difficulty raised by the exis-

tence of extremum will accompany the calculus of variations over a long 
period of its subsequent history. 

 

3.5. The Style of Synthetic Geometry 
 

Since the end of the 17th century and the 18th century, the isoperimetric 

problem has been studied using variational methods, such as Euler, La-
grange, and others. 

A return to geometric methods was made from the beginning of the 19th 

century with Jakob Steiner (1796–1863), who introduced a geometric con-

struction known as Steiner symmetrisation. 

Going back to the original text: 

For each different area of the circle and each direction of the line, a new 

smaller isoperimetric area is associated. These are geometric constructions 

in which, starting from a figure that is not a circle, one associates either    

a figure of the same perimeter but of the larger area, or a figure of the same 

area but of the smaller perimeter; the area and the perimeter of the circle 

remain invariant by these constructions. Steiner concludes that the theorem 

is proved for the circle, i.e., that, among the curves that enclose a given area, 

the circle has the smallest perimeter. 

Let L be the perimeter of a closed curve in the plane and S the area it con-

tains; then the isoperimetric problem requires to 
 

Determine among all closed curves of length L the one with the greatest 

area and show that the solution is the circle. 
 

The isoperimetric deficit of a curve is defined by the ordinary inequality: 

 

2

0
4

L
S


− 

 (*) 

and it is shown that equality is valid only for the circle. 
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Steiner (1971) gives five demonstrations, but every time he assumes the 

existence of an extremum. This demonstration means it implicitly assumes 

that, in all isoperimetric figures, there is one that has the maximum area. 

With Steiner, the isoperimetric problem, such as the isepiphanic problem, 

can be expressed by isoperimetric inequalities like (*). His research aims to 

give basic demonstrations of these inequalities without assuming or demon-

strating the existence of a maximum figure. He achieved this goal by improv-

ing the isoperimetric inequalities, that is, by showing that in the second 

member of inequality, where there is zero, a positive quantity can be substi-

tuted in general and that it can be cancelled only in the cases of the circle or 

the sphere. This process also avoids the notion of limit, except in defining the 

figures’ perimeter, area, and volume. 

The style is now that of synthetic geometry. 

Following Steiner, in 1905, Felix Bernstein (1878–1956) demonstrated 

other inequalities, and Danish mathematician Tommy Bonnesen (1873–

1935) published a book entitled Les Problèmes des Isopérimètres et des Isépi-

phanes (Bonnesen 1929) in which he demonstrated inequalities such as: 

 

( )
2

2

4 4

L
S R r




−

 
 − 
   

where R and r are the rays of the greatest circles, respectively circumscribed 

to and inscribed in the convex curve L. We immediately see that if R = r, we 

have equality for the circle. 

As can be seen, the isoperimetric problem, in a way at the origin of the 

calculation of variations at the beginning of the 18th century, became the 

object of the theory of convex domains on the plane or space, and convex 

curves,3 from the end of the 19th century and the beginning of the following 

century. Thus, from the end of the 19th century, the isoperimetric problem 

changed its scope: it now consists of determining, among all the closed plane 

curves of a given perimeter, the one that contains the greatest area. This 
same problem can still be followed in other fields of recent geometry, where 

the inequalities were found to serve in one way or another. This long and 

rich history illustrates the variety of styles encountered in the conceptualisa-

tion of the same problem. 

 
3 “Convex domain” on the plane or space is taken to mean a set of points such that 

given any points A and B, it contains the whole line segment AB that joins them. The 

boundary of a convex and bounded figure is a closed convex curve. 
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Conclusion 

 

In conclusion, it seems that it is clear from the example of Menelaus, the 

founder of spherical geometry, that the multiplicity of styles is the effect of 

the gestation of a new style, which cannot exist without the old one. We have 

observed in this example that the Euclidean style, defined from the axiomat-

ics of Euclid’s Elements and the theory of proportions, was called upon to 

deal with a new object that does not admit a postulate essential to the defini-

tion of this style, and which even excludes the means of conceptualisation of 

Euclidean geometry. Menelaus had to combine the Euclidean style with an-

other style, which can be described as a proto-intuitionist. This intersection 

between two styles is not uncommon in the founding works of new mathe-

matical disciplines: it can be observed in the Conics of Apollonius, the Optics 

of Ptolemy, and other works. 

As for the example of the isoperimetric problem, it seems that the multi-

plicity of styles is due to the transformation of the object of research, 

aroused by the ontological density of the circle and the sphere, whose prop-

erties are inexhaustible. The multiplication of styles that involve the lan-
guages of cosmology, the geometry of figures and solid convexes, infinitesi-

mal geometry, differential, and integral calculation, metric geometry of con-

vex domains, is the effect of the acquisition of other methods, forged in the 

event of new research in other fields, and which have allowed the unveiling 

of new layers in the thickness of the objects—the circle and the sphere. Be-

yond the plurality of styles and methods, the unifying element of this subject 

lies in the constant effort to determine the extremality properties of certain 
convex domains and develop a theory of these domains. 

This long and rich history also illustrates what we already learned by the 

example of the Sphaerica: the multiplicity of styles is the hall of mathematical 

research that deals with dense and fruitful objects. One might dare to say 

that the uniqueness of the style is an indication of the lightness or even the 

poverty of the object. 

Perhaps this is why Granger proposed this heuristic instrument to 
philosophers and historians of science, which allows us to marry this com-

plex dialectics between uniqueness and multiplicity, which stirs many math-

ematics and science subjects. 
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