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Abstract
Cybersecurity has benefitted from Artificial Intelligence (AI) technologies 

for attack detection. However, recent advances in AI techniques, in tandem with their mis-
use, have outpaced parallel advancements in cyberattack classification methods that have 
been achieved through academic and industry-led efforts. We describe the shift in the 
evolution of AI techniques, and we show how recent AI approaches are effective in help-
ing an adversary attain his/her objectives appertaining to cyberattacks. We also discuss 
how the current architecture  of computer communications enables the development of  
AI-based adversarial threats against heterogeneous computing platforms and infrastructures. 
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1. Introduction 

Artificial Intelligence has enabled cybersecurity researchers and practitioners alike 
to design and develop cutting-edge solutions to counter the ever-expanding and 

increasingly sophisticated types of cyberattack that threaten contemporary computing 
systems and platforms. Increasing production and marketing of AI-based cybersecuri-
ty solutions have set the trend during the past decade [1, 2]. Recent advances in the  
AI research domain have empowered cybersecurity systems to manage machines au-
tonomously, and to safeguard these by creating rapid defence and reprisals against an 
adversary, in near real-time [3]. On the other hand, the adversary has also gained signifi-
cant potency and far outreach in his/her attack strength owing to the same advancements  
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in Artificial Intelligence technology. Though the core attacker steps comprising a data 
breach, namely vulnerability detection, exploitation, post-exploitation and data theft 
[1], remain the same, the potential impact of an AI-based system deployed to do so is 
of increasing concern to all. This is due to the shift from traditional (Fig. 1.) to modern 
Internet architecture (Fig. 2.).

The Internet was traditionally viewed as networked interconnections of 
client-server computers as Fig. 1. shows. The client, such as a PC, sends a request pack-
et to a server. The server processes the request, initiates some actions such as fetching 
data from the database, and sends its response back to the client. These computers are 
interconnected by network devices (e.g. routers). Such a client-server model facilitates 
the exchange of data, but not knowledge or insightful information that has been pro-
cessed by an AI machine.

However, the modern Internet needs to be modelled as a communication 
system not only for exchanging data, but also to render feedback, and knowledge [4] 
as Fig. 2. shows. A large amount of data is generated by IoT devices, through their sen-
sors that generate phenomena data including user or device location, speech patterns, 
text, emotions (e.g. through a like button), social links, pictures, and videos. These IoT  
devices send the data to other devices, including to the Cloud. Their interconnection is served 
by a gateway that supports heterogeneity in transmission techniques and communication 
standards. At the other end of the communication line, a machine is responsible for the pro-
cessing of collected data to improve its usability. It generates outputs from the classifica-
tion of the data to location recommendations (e.g. a Google map route recommendation). 
The machine either stores the data in the database or transmits the same (or data con-
verted into knowledge) to a consumer, such as to a smart device, or a monitoring system.  
This chain of devices collectively comprises an intelligent system, which allows for itera-
tive feeding of data to learn adaptively from sensor data and through device feedbacks.
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Figure 2. The architecture of the modern Internet, adapted from [4].
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Figure 1. The architecture of the Internet.
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As a computing device of an intelligent system, each of the resources illus-
trated in Fig. 2. (i.e. IoT sensors, gateway, data processing, and consumer) can become 
a target of AI-based cyberattacks (Fig. 3.). They are vulnerable to two attack artifices: 
those crafted by rational agents or bots, and those that comprise behaviour-mimicry  
attacks. These two artifices cover the definition of AI, i.e., agents that act in a human or 
rational way [5]. The first artifice, acting in a human way, invokes the Turing Test wherein 
human observers cannot distinguish whether the behaviour of a system was caused by 
either a human or a bot. The second artifice, of acting rationally, means that a rational 
bot can yield an optimum solution given a complex challenge and offering a wide range 
of corresponding solutions with varying degrees of risk.

A target operates in one of the three computing domain infrastructures, 
namely, enterprise (including Cloud), mobile, and industrial control systems [6]. Fig. 3. 
shows that targets become victims when either one of the security goals is compro-
mised. These are the confidentiality, integrity and availability of a computing system. 
Thus, an intelligent system becomes a victim when any one of the targets (i.e. IoT sen-
sors, gateway, data processing, consumer) that is part of a computing infrastructure  
(i.e. enterprise/Cloud, mobile, industrial control systems) is attacked by some AI artifices 
(i.e. behavioural mimicry, rational bot), with the effect that one or more of the security 
goals (i.e. confidentiality, integrity, availability) is compromised. This means that attack-
ers can employ a rational bot to advise on an optimum tactic flow out of many attack 
possibilities that have been described above. When engaging in a specific technique, the 
intelligent agents can deliberately find intrusion actions that produce data so as to get 
misclassified as normal. Thus, malicious AI agents capable of discovering the weakest 
link in a cyber system can be designed to launch adversarial AI attacks.

The work we present in this paper offers in-depth analysis of adversary 
approaches which exploit AI techniques to launch sophisticated cyberattacks. The ap-
proach allows us to see how the modern Internet phenomenon (Fig. 2.) and the com-
plexity of the cyber kill chain [7] in penetrating cyber infrastructures can lead to the 
emergence of AI agents attacking the latter (Fig. 3.). We show that:

• as the modern Internet exchanges feedback data and knowledge, in addition  
to IoT-generated data, current devices are vulnerable to supply-chain 
compromise;

• the combination of possible tactics seeking to infiltrate cyber infrastructures is 
too complex to allow human analysts to understand zero-day attacks manually;

• in adversarial AI, agents can leverage the abundant data and the complexity of 
the problem domain.

1.1. Comparison with previous works
Discussions [8–10] to be found in the literature presented the Internet as 

a client-server architecture (Fig. 1.). Attacks were categorised on the basis of the control 
and modification of request packets [8]. From this point of view, adversarial AI techniques 
were tested only in respect of the meeting of data analytics goals, including as regards 
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Figure 3. Techniques attacking the modern Internet.
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the efficacy of an intrusion-detection system and the ways in which network traffic can be 
misclassified [11, 12], or in relation to how a DoS attack is carried out through control of 
the volume of request payloads and their corresponding packet sizes [12, 13]. Adversarial 
AI was viewed in terms of its being a matter of finding data models to detect phishing or 
credit-card fraud [12, 14], rather than having an external IoT device manipulating the mod-
el. Malware was analysed using white-box approaches [11, 14, 15], rather than being seen 
from the point of view of a rational bot that can combine previously-known techniques from 
a knowledge base. Analyses of AI attacks on intrusion-detection systems were viewed from 
a one-sided perspective [16] wherein datasets can be manipulated to produce attack data. 
This view alludes to the IoT perspective (as Fig. 2. shows) whereby response packets also 
act as knowledge to create adversarial data.

Other works [17–20] also fail to present background on how AI agents can 
leverage supply-chain compromise to target intelligent data-processing machines deployed 
on a range of infrastructures including autonomous systems and critical infrastructures. They 
have shown how adversarial AI agents can be used mostly for data-processing systems or 
for specified cyber infrastructures, as Tab. I. shows.

Although the literature has discussed the circumstance that AI can be used 
for both attack and defence, few have examined the use in adversarial cyberattacks [21]. 
Adversarial AI techniques have allowed for the development of video games and natural 
language understanding [22], speech recognition, computer vision, online recommendation 
systems, and bioinformatics [23]. Most techniques that discussed cyberattacks observed 
from the data-analysis point of view (Tab. I.), within which AI models were challenged by 
reference to the ways in which request packets can be manipulated, rather than how exter-
nal devices can infiltrate AI behaviours. In that circumstance, there was little discussion of 
ways in which AI has gained use in current adversarial cyberattacks, or indeed on methods 
developed to mitigate intelligent agents designed for such attacks.

2. Adversarial AI techniques used in Cyberattacks 
Artificial Intelligence (AI) techniques range from mathematics and statis-

tics to logic models, whereby procedures are encapsulated in an algorithm. The latter are 
known commonly as machine-learning algorithms, comprising both machine learning and 
AI interchangeably. Machine-learning algorithms analyse data in terms of samples and 
features. As an illustration, if a dataset is in the form of a table, the samples are the rows, 
and the features or dimensions are the columns. 

We briefly introduce certain common AI techniques in the following para-
graphs, before going on to discuss how they might be put to adversarial purposes.

Expert Systems represent one of the earliest computing techniques for 
decision-making. By way of a series of if-then-else flows, human experts are mimicked 
in reaching a final state, given a range of input data. In cybersecurity, such can serve as 
a knowledge base identifying asset vulnerabilities [24].

In turn, Particle Swarm Optimisation approaches [25] mimic the behaviour 
of social animals, in that each individual learns effectively from the others, with a view to 
optimum solutions being arrived at, e.g. as regards food. Such techniques were used for 
classification, weight optimisation, feature selection and dimensionality reduction [26].

Table 1.  Comparison with previous works.

Supply Chain Supply Chain Data Analysis

Other papers [21] [11–20]

Our contribution Covered Covered
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Naïve Bayes [27] is a classic algorithm that gives acceptable results 
as data are classified. As such, it is used as a benchmark in comparing classification  
performance when a new machine-learning algorithm is developed.

Support Vector Machines [28] is a classification technique that can clas-
sify non-linear data. It is relevant to cybersecurity analysis because Internet traffic con-
sists of heterogeneous data generated from a wide range of devices.

Artificial Neural Networks (ANNs) [29] analyse all features from each 
sample as a meshed network. This allows for flexible re-learning of new samples 
even after the model converges at the end of the training phase. This behaviour of 
ANNs is suitable for the analysis of Internet traffic in which there are rapid changes 
of the data pattern.

While Naïve Bayes and SVMs process the values directly from data 
features, ANNs can have multiple layers of intermediate features. Each layer can be  
designed to represent a set of features that is derived intuitively from the previous 
layer. Such layered networks are used in Deep Learning.

Deep Learning or Deep Neural Networks (DNNs) come with their deriva-
tives, each with variations as to how networks are connected [30]. Their applications are 
discussed further in Section 2.1. Deep Learning networks have at least an intermediate, 
or a hidden, layer of units that is present between the input and output values. When the 
flow which adjusts the weight progresses in one direction from the input to the output 
layer, the network is called a feedforward network. If the adjacency of input values mat-
ters, then Convolutional Neural Networks (CNNs) become the architecture of choice. In-
stead of having a mesh of connections from the input values to the following layer as in 
DNNs, each unit in the CNN hidden layer is connected to a group of input values. As such, 
adjacent input values are captured as a spatial region. While CNN architectures repre-
sent spatial relationships, Recurrent Neural Networks (RNNs) consist of an architecture 
by which to model data with temporal characteristics. RNN outputs at time t are looped 
back, such that when unfolded its value can be calculated together with the input at time 
t + 1. On this basis, the network remembers and computes by reference to inputs from 
a series of time states. A derivative of RNN architecture is provided by Long Short-Term 
Memory (LSTM) networks, which can handle a longer chain of units without losing prior 
information. A Generative Adversarial Network (GAN) is a pair of ANNs wherein one net-
work generates fake data samples that mimic the original training data, and the other net-
work classifies the fake and original data. The two networks compete during the training 
iterations, with one network attempting to mislead the other. Thus, the generator aims to 
create fake samples that the discriminator cannot distinguish from the training data. The 
discriminator aims to classify the fake samples from this training data. As this section will 
discuss, GANs have attracted much attention in adversarial AI techniques.

2.1. Adversarial AI agents
Cyberattacks can leverage defensive AI techniques to compromise  

cyber systems. There are two characteristics of modern AI solutions that allow for the 
emergence of malicious AI agents, i.e. iterative learning and the use of a knowledge-
base. Iterative learning allows devices to learn from the data generated from other  
ata-processing devices. As an example, defensive techniques such as anti-malware can 
be repurposed to develop new variants of mobile malware through iterative learning. In 
[31], the authors used Deep Learning to ascertain whether a malware variant was de-
tected by anti-malware. The neural network iteratively mutated the variants by obfus-
cating their code until it was able to evade a group of anti-malware programs tested. 
Similarly, in [32], the authors used Genetic Programming to mutate executable programs. 
In this case, the subroutines of the programs constituted the chromosomes. They were 
selected and crossed over to create new malicious code, and then the resulting code was 
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obfuscated. To test whether the code had become malicious, anti-malware was used 
twice, i.e., before and after the code was obfuscated. Iterating this process improved the 
selection of fitness values, in that a smaller number of malware detections was noted 
after the second test was conducted, as compared with the first one.

Inevitably, the use of a knowledgebase can also give malicious AI agents 
a competitive advantage. The authors of [33] described two types of real-life AI-based at-
tacks that had occurred previously, i.e. attacks that took advantage of humans as the weak-
est link; and those that benefited from a rich knowledgebase as Fig. 4. illustrates. Using 
humans as the weakest link, in [33], attackers employed a tool to observe how a human 
user clicked and forwarded messages on social media. This allowed attackers to identi-
fy the most vulnerable target prone to a clicking-based phishing attack, and employed  
AI-based techniques to tailor highly relevant messages to the targets. In the second type, 
where the attack employed a knowledgebase, it was possible to describe a software vul-
nerability that had previously been proven to patch software. In a competition setting, the 
knowledgebase was employed to create autonomous attacks targeting and successfully 
compromising software systems belonging to other contestants. In [33], the authors also 
described a hypothetical case in which AI agents launch cyberattacks (Fig. 4.). It shows 
that worms, or codes that can spread autonomously to other systems, can automate the 
above cyberattack scenarios, e.g. by creating phishing emails or crippling target systems.

Our study agrees with the above view that AI-assisted cyberattacks are 
increasingly a threat as they can conveniently circumvent existing security controls. 
Intelligent agents can engage in the autonomous targeting of weakest links in system, 
mimic legitimate behaviours, bypass intrusion-detection systems, and spread across 
different infrastructures. In this section, we show that current research has developed 
certain scenarios previously regarded as hypothetical. Fig. 5. illustrates the structure 
of the remaining discussion.

Fig. 5. shows that malicious AI agents launch cyberattacks through be-
haviour mimicry and rational bot techniques. As a result, the attacked target behaved 
differently in terms of computing output or performance. The AI agent captures these 
differences to optimise its attack strategy. The attack strategies are further applied to 
evasion, data poisoning, and model stealing techniques.

2.2. Evading detections by mimicking legitimate behaviours
Cyberattack detection has been described as detecting anomalous be-

haviour in networks or by users [34, 35]. Intelligent agents would mimic normal be-
haviour of networks, computer systems, or users, in order to bypass intrusion-detection 
systems. These agents are equipped with the statistical distribution of human-gen-
erated traffic patterns when online [34]. Intelligent machines would mimic the action 
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Attack
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Figure 4. The current view on how AI techniques can be employed  
to launch cyberattacks.



www.acigjournal.com

applied cybersecurity  
& internet governance

ACIG, VOL.1, NO.1, 2022                  DOI: 10.5604/01.3001.0016.0800 7

of a human very closely [35]. Hence, the capability of an adversarial intelligent agent 
to evade detection can be attributed to behavioural mimicry.

The mimicking of legitimate behaviours can be made possible because 
the data generated by a device are no longer a mere response to a request packet as 
Fig. 1. shows. In today’s Internet architecture (Fig. 2.), intelligent devices process re-
quest packets to generate insightful information (knowledge) in line with a device’s 
data-processing behaviour. Thus, for example, a cloud service might send knowledge 
to a smartphone about which communication path would be optimum to traverse be-
tween two points. 

The knowledge depends on the data-processing intelligence in observ-
ing the smartphone user’s behaviour, e.g. as regards time of day, mode of transport, and 
most apt user preference between shortest path and journey time. 

The data generated by a device thus depend on what that device has learned 
in addition to the request packet. It is therefore possible to train a device by mimicking 
some normal behaviour patterns in order to generate certain targeted data. This means it 
is possible to feed false data to the Cloud service (Fig. 2.) as generated from IoT sensors 
(Fig. 2.). Such a technique is known as the “supply-chain compromise” [36–38]. Behaviour 
mimicry is therefore an approach that can be taken in launching supply-chain compromises.

2.2.1. Data poisoning
The techniques to evade detection systems poison a system’s input data. 

Poisoned data is basically contaminated data that can cause the detection system to 
misclassify inputs. Data poisoning assumes that the adversarial system has a priori 
knowledge of normal patterns. For example, in Internet traffic, normal network traf-
fic patterns are those generated by human users as they browse websites. In [34], the 
authors demonstrated attacks that pre-empt a target’s service successfully evading an 
intrusion-detection system even as the target was flooded with normal traffic, with the 
target caused to drop packets. Fig. 6. offers a statistical illustration of poisoned data. 
The black curve represents the distribution of a normal traffic feature value; the grey 
bar/curve represents attack values; and (left figure) the red threshold shows a detec-
tion system, which separates attack data from normal data. The right figure illustrates 
data poisoning. The normal values are contaminated with the attack values, evading the 
threshold bar, and rendering the attacks stealthy.

2.2.2. Stealthy attacks
Fig. 6 summarises the method by which stealthy AI-based cyberattacks 

can be designed, i.e. through the supply of data whose anomalous value range over-
laps with the acceptable range. While the above example [34] demonstrated that 
stealthy attack traffic can be prevented by the dropping of packets, the authors of [40] 
showed how dropped packets in wireless networks can be made stealthy, causing the 
invariable blacklisting of legitimate nodes. In wireless networks, nodes (e.g. wireless  

Figure 5. Intelligent agents launch cyberattacks through behaviour  
mimicry and rational bot techniques.
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devices) communicate within a certain communication range defined through by way 
of respective radio power values. Intrusion-detection systems can be deployed by 
means of collaborating nodes forming a series of overlapping radio range for scanning, 
which allows a node to cascade its network range of observation alongside neigh-
bouring nodes. A malicious node can therefore be detected when it fails to forward 
packets within a time threshold to its neighbour. However, invoking set theory, the 
authors of [40] demonstrated that a malicious node located at an intersection of two 
sets of radio ranges can intentionally misroute packets such that they are forwarded 
to a victim node, causing the latter to drop packets and be blacklisted by the intru-
sion-detection system. This shows the way in which a malicious node that had learnt 
about the threshold value of a system and its position was able to affect the reputa-
tion of another node.

Stealthy attack methods are applicable to a wide range of cyber infra-
structures, such as industrial control systems, facial recognition, and autonomous ve-
hicles. In industrial control systems that monitor the degree of acidity (pH) of water, 
attacks can change the water pH values to a dangerous level [41], where the adversary 
is assumed to have compromised the pH meter device. The authors of [41] showed 
that a detection system that depends on a threshold value can be evaded by having 
the attacker adapt to the threshold value/range.

A case of the use of supply-chain attacks can be seen in the protection of 
cyber-infrastructures in which use is made of certain physical barriers, with a view to 
physical intruders being delayed, deterred and detected. Physical access, e.g. involv-
ing  direct access to cyber-equipment, contributed to 56.3% of attack vectors in 2019 
[42]. The mitigation of physical intrusions would entail installation of physical locks 
to deter and delay access, or cameras to detect presence. In this case, facial recogni-
tion can play a role in protecting cyber-infrastructures. Cameras can be programmed 
to recognise faces and raise alarms when they capture non-whitelisted facial images. 
However, in this case it is possible for cameras to be evaded to raise an alarm. Evading 
a classifier that recognises images of a person’s face is to be done where an indiscern-
ible image (such as a eye glass) is added to the input image [43], causing the classifier 
to recognise it as a different person. The authors of [43] first assumed the possession 
of the knowledge of the classifier, so that stealthy patterns might be designed. They 
used Deep Neural Networks to construct the classifier and to find a set of patterns, r, of 
the left-tail norm x, such that x + r is classified into a desired class. Second, the study 
conducted a black-box test by applying the pattern (i.e. the eye glass) to a commercial 
face-recognition Cloud-based solution. Thus, the test relied on the software output as 
feedback to readjust the stealthy pattern r. However, the cloud classifier only outputs 
the top three classes, causing further difficulty with finding an indiscernibly modified 
input x + r. The study therefore used the Particle Swarm Optimisation algorithm that 
presented intermediate personified images, allowing each iteration to move away 
from the previous solution space and to approach the candidate solution more closely.  
As a result, 19 out of 20 images tested in the study proved to be evaded successfully.

Figure 6. Left: a threshold (dotted vertical line) separates attack values (grey)  
from normal values (black). Right: attack values mimic the distribution  

of normal values. Adapted from [39].
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Knowing the a threshold value of how much friction and wind can be tol-
erated by autonomous vehicles allows adversaries to fake a vehicle’s positions without 
being detected. The authors of [44] demonstrated that adversaries can infer the total 
number of errors that can be tolerated by two target autonomous vehicles. The targets 
employed the Kalman filter, applied commonly in estimating the position of remote ve-
hicles from the time lapse following on from the last collection of data. If an attacker 
compromises the control input/output of an autonomous vehicle, then the time-series 
data describing the vehicle’s position can be derived, such that the error window size can 
be inferred. This allows the attacker to possess knowledge as to how much total error 
was tolerated within a time window. Injecting such stealthy errors into the controller 
can cause vehicles to deviate from their positions. As a result, a drone was, for example, 
shown to take a 50% longer time to accomplish a mission, while a rover took 30% longer 
[44]. In addition, the authors demonstrated that a large, poisoned dataset successfully 
evaded an intrusion detection system when it was subjected to drone memory, caus-
ing a drone to deviate 11 degrees when landing – a departure sufficient to prove fatal. 

2.2.3. Perturbation
Another name for data poisoning is perturbation attack, as found in common 

use against industrial control-systems infrastructure. Perturbations are input noises whose 
range values are permitted by the system. In a network of water pipelines, the intention-
al perturbing of a water-meter reading can cause a machine-learning-based classifier to  
allow unusable water to be distributed to the population. A study [45] proposed that such 
a classifier should behave as a linear constraint to detect anomalies, given its mimicking of 
the water-flow behaviour in a pipeline network. While the water network in question was 
equipped with meter sensors by the provider, a linear constraint mandates that, for example, 
linear values are expressed as: Meter1 > Meter2 + Meter3 is a legitimate pattern. Otherwise, 
the classifier detects an anomaly. The water network that the study observed was complex, 
consisting of 51 attributes, i.e., the values from 25 meters and the state of 26 actuators  
(i.e. valves that control flow), yielding a complex linear matrix. The study leveraged the  
system’s tolerance for noise and normal fluctuations to perturb water-flow measure-
ment, and ensure successful evasion where the detection of bad water flow was con-
cerned. Similarly, perturbation of the voltage in an electricity network system can cause 
the system’s classifier to misclassify electricity events identified in network traffic flow-
ing into the grid [46]. In both cases, i.e. a network involving water [45] and electricity 
[46], the adversary can take an extra step in generating a normal pattern by assuming 
the classifier model. As is noted above, in the case of a water network, an adversary can 
assume a linear-constraint classifier, whereas in an electricity network, the adversary 
can assume a Convolutional Neural Network classifier, given that electrical-event be-
haviours are described ideally in time and space. Furthermore, the studies of both the 
water and the electricity network assumed the compromising of the systems’ meters 
by an adversary, with this allowing it to measure results obtained through system per-
turbation, and to generate poisoned data.

A variation for an adversary in modelling the target system is to assume 
feature ranking. In [47], the adversary perturbed the feature values describing events 
in an electricity network system, starting from the highest-ranked features. The pertur-
bation of feature values could be achieved iteratively to the next ranked feature, until 
such time as misclassification of electricity events was observed, with this therefore 
aiding the adversarial objective of disruption/sabotage.

2.2.4. Fuzzing
The poisoning of input data can rely upon fuzzing techniques applied 

generally in software auditing. Fuzzing generates many input patterns that are in-
put to a software program, so that many execution paths can be monitored for the 
purpose of bug-detection. The black-box fuzzing approach is dynamic analysis, by 
which poisoned inputs are fed into a program and the behaviour thereof is monitored,  
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to confirm whether one of the security triads (i.e. confidentiality, integrity, and availabil-
ity of the program) has been compromised. In [48], the authors describe an example in 
which a black-box fuzzing approach has been used to ensure that a program cannot be  
executed. Poisoned files are used as input to evade a program’s parser recognising 
malicious files, with the result being for the program to execute the file. Test files were 
poisoned by fuzzing their bytes (i.e. random byte, delete, clone, or overwrite) from  
certain sections (e.g. the header). The poisoned files were still accepted for execution 
by the program, with the result that it was crashed successfully.

AI techniques have played a significant role in exacerbating the difficul-
ties noted previously in fuzzing steps. As Tab. II. shows, survey studies [49, 50] make it 
clear how each fuzzing step poses its own challenges and solutions. Fuzzing requires 
knowledge of how a target program is coded, and how it behaves under certain test 
patterns. As there are many cases to test, good initial patterns, or seed values, are  
required to efficiently find new execution paths to save computational resources  
(e.g. CPU time). Fuzzing is therefore an optimisation problem with multidimensional in-
put vectors. Traditionally, certain assumptions have been made as to which input vec-
tors can reveal program vulnerabilities efficiently; and some open-source seed patterns 
were adopted in consequence. The detection of new patterns capable of revealing vul-
nerability in software execution paths was achieved through random change of input 
vector values. In [50], the authors presented a survey reviewing 44 studies showing 
how AI techniques have the advantage of processing data as vectors, allowing many 
input patterns to be trained and labelled. Seed files can be represented as feature vec-
tors, and good input patterns can be learned through training. Through the adoption 
of certain mutation-based algorithms, new feature vectors can be generated efficient-
ly. These features gain analysis as AI, SVM, Bayesian and other strategies are used to 
select the fittest input values.

2.2.5. Discussion
We can make three observations from our analysis of the behaviour-mim-

icry techniques present in various IT infrastructures, namely that:

• normal patterns can be learned, whereas where behaviour mimicry is absent, 
they are either assumed, simulated or captured to create a dataset;

• data poisoning represents a subset of evasion attacks;
• the said mimicry of behaviour expands to mimicking machines.

Expanding on these points we first note how the adversary is in a po-
sition to learn. The distribution of normal patterns does not have to be assumed.  
Fig. 5. illustrates this, with the feedback arrow making this clear. In the modern  

Table 2.  AI techniques are used at all fuzzing stages.

Fuzzing stage Challenge Non-AI solutions [49] AI solutions [50]

Seed file 
generation

Find the pattern that 
can save CPU time

Standard benchmarks; 
open-source samples

LSTM to learn known 
vulnerabilities in the 

sample

Testcase 
generation

Cover more program 
execution states

Dynamic taint analysis; 
probabilistic context-

sensitive grammar

Neural networks 
to predict parts of 

greater vulnerability

Testcase filtering Select inputs likely 
to find new paths

Hardware (Intel) CNN to predict 
reachability of inputs

Operator selection How to change input 
patterns efficiently

Generation-based: 
knowledge of program 

input is required

Mutation-based, 
derived from genetic 

algorithm

Exploitability 
analysis

Find vulnerabilities, 
not only crashes

Random-based fuzzing 
strategy

SVM and Bayesian  
to analyse features
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Internet, target systems can be intelligent devices (e.g. smartphones) that send feed-
back information on receipt of a request message. Such feedback data are useful for 
the adversary to learn the threshold value of a detection system, and to eventually 
create a normal pattern dataset. For example, in autonomous vehicles, an attacker 
can infer the errors that the vehicle can tolerate by learning from its last location [44].  
In industrial control systems, attackers can infer the tolerated noise in a water [45],  
or by observing water/electricity flows measured by the compromised meters in an 
electrical system [46]. Thus, data poisoning techniques can learn and create data, rath-
er than merely assuming normal patterns.

Second, the goal of data poisoning in cybersecurity is the evasion of de-
tection. This differs slightly from how attacks were defined outside the cybersecurity 
context. From a data-analysis perspective, poisoning attacks take place at the training 
stage, while evasion attacks occur at the testing stage [17, 48]. This reflects the differ-
ing data-analysis strategies, i.e. white-box and black-box. As attackers in a white-box 
setting have knowledge of the AI model training stages, training data can be poisoned, 
and inputs classifiable as false negatives can then be supplied at the testing stage. On 
the other hand, cyberattacks should be viewed from the black-box perspective. As the 
authors of [51] discussed, attackers in a black-box setting can estimate the allowed 
data values for poisoning, by learning from the feedback data. This agrees with the 
first observation mentioned above, that normal patterns can be learned/estimated.

Third, AI-assisted cyberattacks are concerned with mimicking, not only 
human behaviour, but also machine behaviour. Techniques applied in evading intru-
sion-detections mimic, not only human browsing behaviour [34], but also machine be-
haviour involved in enterprise network systems [40], industrial control systems [41], 
and autonomous systems [44]. The definition of intelligent systems may therefore 
need expanding, to include systems that can convince other machines of their status 
as legitimate peers.

2.3. Rational bots
In the modern Internet architecture, AI-assisted black-hat agents enjoy 

an incomparably greater advantage over white-hat human analysts. Today’s Internet 
creates a network of networks too complex for manual traffic data analysis to be per-
formed. Traffic analysis has become even more complex because devices are intercon-
nected with others across various heterogeneous infrastructures. Illustrating this, in 
[52], the authors proposed a system that detects whether an elderly person has fallen 
accidentally. This system consists of a wearable device (mobile) connected to a digital 
gateway at home with a view to  (remote) healthcare of the elderly being facilitated. 
The gateway sends data to a Cloud service that determines whether the device user has  
fallen accidentally at home, or merely taken a rest-motivated lie-down in a deliber-
ate and intentional way. When a true fall is detected, the Cloud service sends an alert 
message to family members and to an emergency centre (critical infrastructure). This 
illustration shows that complex and diverse IT infrastructures are involved in providing 
a timely, critical solution. White-hat human analysts can become overwhelmed when 
attempting to find patterns from intrusion logs across different infrastructures and plat-
forms. As such, they have built knowledge bases to model cyberattacks [53]. Such bas-
es allow cybersecurity analysts to share their knowledge about how new techniques 
and tactics have succeeded in compromising a target, and allow them to engage in in-
cident handling. However, such knowledge bases can also be leveraged by black-hat 
AI agents, who would like to build rational bots capable of discovering security holes in  
a complex system whilst focusing on the weakest link. Such a tactic for discovering security 
holes that are outside the current compromised system is known as “lateral movement”  
[54, 55, 56]. AI agents can be used by adversaries to engage in rational detection of 
a system’s weakest link, with lateral-movement attacks then performed.
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2.3.1. Model stealing
Model stealing is a technique by which to create a model mimicking 

algorithms adopted for detecting attacks, as Fig. 7. shows. A defensive classifier for  
detecting attacks can classify its input data to attack/legitimate as output. Both the in-
put and output data-vectors create a new dataset for an attacker. The output data acts 
as the label to each input, such that the new dataset is a labeled one capable of being 
used to train AI techniques. The attacker can use this new dataset to train an adver-
sarial model mimicking a legitimate intrusion-detection system. Deep Neural Network 
techniques are adopted as an adversarial model to mimic a machine learning-based 
classifier. In [57], the authors used a classifier for machine learning-based intrusion- 
detection, and the proposed stealing model yielded results of 99.59% accuracy.

As Tab. III. makes clear, most challenges in model stealing appertain to 
knowledge of input data accepted by the victim service e.g. a machine learning-based 
classifier, so that the adversary knows what to query. On one hand, exact input data is 
required for the classifier to be stolen; but on the other there is a need for knowledge on 
classifier, in order for acceptable input data to be produced. Construction of that input 
data entails estimation of its range of parameters in a multidimensional space, as well as 
limitation on the amount of required data samples with a view to computational complex-
ity being minimised. Input-data generation is one of the issues faced by AI systems. To 
address this, the author of [58] adopted a smaller external dataset to estimate the input 
range of a dataset used by a victim service hosted in the Cloud. Generative Adversarial 
Networks (GANs) were deployed to estimate parameters in the stolen model, with the 
external dataset as the input. The adversary had no a priori knowledge of how much of the 
external data overlapped with the input data in the Cloud. To overcome this, a knowledge 
distillation technique [59] was adopted to measure the loss, i.e. the difference between 
the output from the GAN model and the output from the Cloud model. Smaller differences  
denote correct estimation of output values. Then, the output data that the victim was 
able to label correctly label received a higher weighting than other output data. This 
allowed GANs to estimate the parameters in the stolen model, thereby generating syn-
thetic input data. In return, the latter yielded a better stolen model. The quality of the 
input data was measured by reference to the inception score-higher numbers come 
from a lower entropy value when the joint probability of the synthetic and victim data 
is high. The work showed that synthetic data achieved 60.58% higher inception-score 
values than the external data.

New dataset

Classification 
(attack/legitimate)Input dataset

Machine learning-based 
classifier

Figure 7. Model stealing, adapted from [45].
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Similarly, the authors of [60] employed an external dataset and the 
knowledge-distillation technique to create synthetic data. In contrast to the work of 
[58], this seeks to maximise the difference between the victim’s output data values 
and the output values obtained from the stolen model to measure loss. The measure 
employed zeroth-order gradient estimation [61] to update the weight that maximises 
the entropy of probability distribution between the victim and stolen model output. By 
training both models an input dataset was generated which was then used in training 
the stolen model. The synthetic dataset maximises the learning of the stolen model, 
and therefore creates a highly accurate stolen model.

When the machine learning-based classifier (Fig. 7) is located in the 
Cloud, the challenge of stealing the model is to query the Cloud service discretely. 
Many queries to the cloud can trigger an alarm. In [63], a discrete querying of the mod-
el was developed by employing the transfer-learning technique, which finds a sub-
set of the input data such that the total number of samples is minimised. With DNN,  
input data was pre-trained to yield a new dataset of lower dimension. The authors of 
[62] demonstrated that the stolen model of a Cloud-based image classification model 
achieved accuracies of 83.73%. The number of queries was 1290, compared with 5000 
for other comparable results, which suggests that the model was stolen discreetly.

When the machine learning-based classifier is located on an IoT platform, 
the challenge of model stealing involves handling of incomplete data as obtained from 
a classifier’s output. Wireless data is noisy, resulting in the capture of incomplete data 
properties, as [63] demonstrates. Thus, when there is only a small amount of classi-
fication data available, generation of the stolen model can be aided by human judge-
ment. In [63], the authors reconstructed a model by which to predict lung cancer from 
pulmonary data. The captured data was displayed as 3D images, allowing humans to 
add certain properties, such as marking of lesions, with this ensuring the creation of 
labelled input data. With this data, the authors developed a stolen model, employing 
a Convolutional Neural Network. The technique showed that the stolen and original 
model differed by 0.3% in terms of accuracy.

Tab. III. summarises the discussion on model stealing. The challenges 
here can be viewed from the location of the machine learning-based classifier that 
transforms data, i.e. either at the edge, in the Cloud, or on a mobile device. The issue 
is based fundamentally upon technique for data acquisition. The more remote the 
classifier is, the more limited the data acquired. Thus, AI techniques play a crucial role  
in estimating the data parameters to help an adversary achieve its goals.

2.3.2. Discussion
The above discussion shows that model stealing techniques collect, es-

timate and create data. It is therefore possible for data to be collected into a rich data-
base, oracle or knowledgebase (as the authors of [33] demonstrated), to provide data 
that facilitates future model stealing-based adversarial activities. As Fig. 5. illustrates, 

Table 3.  Model stealing issues depend on where the data is processed.

Location of data 
transformation activity

Challenge Solution

Edge Synthesising input
Data

Minimising [58] or maximising [60] the 
entropy of joint probability distribution 

of victim-synthetic

Cloud Minimising the amount
of traffic for query

Finding a subset of input data [62]

IoT (mobile) Noisy media, incomplete
classification data

Reconstructing the data employing 
human judgment in viewing images [63]
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when such a knowledgebase also incorporates solutions from the evasion techniques, 
an adversarial bot or malware can act rationally with the aim of carrying out cyberat-
tacks. If the rational bots or malware knows the victim’s model, it can select the best 
tool for reconnaissance, discretely open ports and replicate itself, maintain persistence 
on the target system, escalate privilege, and conduct lateral movement to attack other 
platforms. An AI agent that is equipped with both evasion and model-stealing tech-
niques can mimic the normal data parameters when pursuing the above attack chain, 
creating undetectable attacks.

2.4. Solutions to mitigate adversarial AI attacks
While the previous subsection formulates AI-based cyberattacks, 

this subsection discusses their mitigation techniques to defend against adversarial  
AI attacks. Principally, these methods derive from, first, the assumption that the vic-
tims had significantly more knowledge about their own network/system parameters 
than their adversaries. Second, that the adversarial techniques would have some dis-
advantages inherent to them. Thus, the mitigation techniques leverage these adver-
sarial techniques’ disadvantages.

2.4.1. Feature definition
A set of features is what enables a machine-learning technique to engage 

in classification. When an adversary has obtained the feature set, they can mimic the 
way the machine learning technique classifies data. In this case, the defenders’ option 
would be to redefine the set of features for data analysis. This is made possible when, 
for example, a new technology is introduced, causing the defender to re-analyse data. 
In [34], the authors showed that, when the new web communications protocol HTTP/2 
was introduced, the traffic pattern was different from its predecessor, HTTP/1.1. This 
allowed adversaries to create attack traffic undetectable by machine-learning tech-
niques. Thus, the authors of [34] proposed a new set of features to allow for the de-
tection of the stealthy attack traffic.

The defining of a new set of features follows the data mining technique, 
such as the one described in [64]. A feature is identified either by observation or in-
tuition. A good feature has a value distribution that can identify the intended class  
(e.g. attack or legitimate) closely. For example, a feature with wide data distribution 
can allow a threshold to be placed for classification (Fig. 6). When data is multidimen-
sional, a set of identified features is ranked according to how well the combination 
can lead to a classification. Algorithms such as information gain [65] are used com-
monly in ranking features.

Both the adversary and the defender can find a set of features for attack 
modelling as well as for mitigation, as in the case of Cloud services. Cloud services 
see incoming requests from any client connecting to them, of either legitimate or fake 
status. When a machine-learning service is deployed in the Cloud, it is vulnerable to 
fake queries that can be crafted for the purpose of model stealing. That is, from the 
adversary perspective, the distribution of the input dataset can be inferred (as dis-
cussed in Section 2.3), allowing adversaries to define morphed features. To detect 
adversarial query traffic from the defender’s perspective, the authors in [62] analysed 
the distribution difference between legitimate and adversarial query traffic. They then 
proposed a set of features by which to detect the adversarial query traffic, allowing 
them to detect abnormalities in the input data with 92% accuracies.

2.4.2. Monitoring
As discussed in [66], network management involves configuration and 

measurement. Monitoring is the activity of collecting and analysing network measure-
ments, which depict the network’s behaviour and performance. Monitoring involves 
the collection, analysis, and presentation of data (Fig. 8). The collection layer captures  
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network traffic; the analysis layer extracts network traffic and converts the same into 
relevant data; and the presentation layer provides for meaningful (e.g. graphic) rep-
resentation of the data that interprets network behaviour and performance. Because 
such network monitoring is sourced from network traffic generated from the whole 
network under management, cyber-network owners have better knowledge of their 
own network than the adversary.

In [40], the authors observed that the adversaries can only access a subset 
of adversarial nodes situated in the network to generate stealthy attack traffic. A com-
promised node can manipulate only a subset of its neighbouring nodes to believe (i.e. 
measure) that certain packets have been forwarded. However, not all nodes can be 
manipulated in a single broadcast, because traffic-volume configuration and historical 
measurement differ from one node to another. Thus, the authors proposed to expand the 
monitoring of the network so that more neighbouring nodes count the number of packets 
forwarded from each node. If one node has differing belief than another as to the number 
of packets being forwarded by a monitored node, then packet dropping had occurred.

Similarly, in critical infrastructure networks, the authors of [41] observed 
that attackers face non-negligible risks of being detected if they generate attack traffic 
imprudently. This is because the behaviour of the network can become unpredictable 
to the attacker. In simulating attacks, the author of [41] assumed that the attackers 
know the distribution of the input sensor values (with consumer behaviour considered 
to consume utility over time). However, sensor values depend on complex interactions 
with other sensors in real network settings. Attackers have less knowledge than de-
fenders in predicting consumer behaviour and random perturbations in the network. 
Thus, the deploying of an extensive monitoring system throughout the network can 
confer advantage upon the defender.

2.4.3. External validation
External validation offers an innate defence against adversarial AI, be-

cause the efficacy of research findings may not be as valid when applied to real settings.  
Research conducted by the authors of [41], for example, simulated the critical infra-
structure out of a room-sized lab, showing how pH levels in water can be manipu-
lated. The infrastructure consisted of 6 main Programmable Logic Controllers (PLCs), 
one of which was to control the pH level. The study [41] assumed that a man-in-
the-middle attack succeeded in controlling the PLC for pH level, causing the water  

Terminal

Management stations  
with storage capacity

Network nodes

Presentation

Analysis

Collection

Figure 8. Monitoring as the management layer in measuring network  
performance, adapted from [66].
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acidity to change linearly, such that pHtime+1 = pHtime + delay. Such lab-based behav-
iour is more predictable than that in real settings, where there would be more PLCs, 
constraints placed on how long a PLC can be turned on/off, and complex filtering sys-
tems for neutralizing water parameters. This would all ensure the potential failure of 
an attack under real settings.

In [60], the authors recognised that the solutions in model stealing are 
impractical in reconstructing real-world image classifications. The problems are that 
the input dataset (Fig. 7) is not readily available to the attackers. Attackers only as-
sume partial availability of the data, or the availability of a similar dataset. As such, 
attacks become ineffective when deployed in real settings. Furthermore, the authors 
in [60] discussed the fact that, while GANs were mostly used to construct a stolen 
model, this is not ideally applied to real image classification settings because the  
dimensionality of the generator’s parameters can be in the order of millions.

Recall from Section 2.2.2. that image recognition can play roles in pro-
tecting cyber-infrastructure. In [43], a study showed how to evade a machine-learning 
technique that is recognising a person’s face. The study used data from images taken 
with room lighting without exterior windows to prevent extreme lighting variations. The 
persons whose faces were taken as data samples must maintain a neutral expression 
and were stood at a predetermined distance from the camera. Such data are not valid 
externally; the authors acknowledged that detection using real outdoor images is chal-
lenging. This means that one defensive method against adversarial AI attacks is to em-
brace the degrading external validity, for example by creating a more complex system.

2.4.4. Alteration of parameters
As Fig. 6 shows, adversaries can infer a classifier’s parameters, such 

as the threshold, to mimic the distribution of target data. The approach to defend-
ing against such a scenario is thus to change parameters, either as the combination 
of parameters used by the classifier or as parameter values. In [44], the adversaries 
inferred both the threshold and the window size of the target data, allowing them to 
inject false data to change a drone’s position. However, when these parameters were 
changed as part of a defensive method, the room for manoeuvre to inject false data 
was decreased. This is illustrated in Fig. 9. Under a normal situation, a drone’s position 
does not deviate from the allowed position threshold. When false data were injected, 
however, the position deviated but was still below the threshold (undetected attack 
1, Fig. 9.). Even though a drone’s position deviated above the threshold, this did not 
raise an alarm because the event was construed as just a fraction of the time window 
(undetected attack 2, Fig. 9.). To mitigate these attacks, the authors of [44] suggested 
having an adaptive threshold and variable-size window which will result in the im-
pact of the attack being diminished. In an adaptive threshold (mitigation 1, Fig. 9.), the  
allowed position deviation threshold was changed, causing the false data to fall above 
it. In a variable-size window (mitigation 2, Fig. 9.), the injected false data still reached 
above the threshold at all times, precisely because the window size was reduced.

Figure 9. To detect anomalies a defensive method can alter either  
the threshold or the window size.
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The second method is to change the parameter values of the ma-
chine-learning model relevant for classification prediction to a higher level of preci-
sion. As the authors of [58] have shown, Cloud machine learning services round their 
values to two decimals to provide only the necessary information. Yet, Cloud servic-
es can make internal use of the higher-precision values to generate their output data.  
By supplying only a fraction of the data at the output, i.e., rounded values to a lower 
precision, Cloud services can defend against model-stealing attacks.

2.4.5. Adversarial training
In adversarial training [67], adversarial attack techniques are used to 

train the system to be defended. The technique uses perturbed input data, which 
represent the attack samples, to cause machine-learning models to misclassify.  
Perturbing input data is crafting data samples such that their feature values are mod-
ified by a small deviation from their original value, causing the machine-learning al-
gorithm to create a deviated / wrong function, to be used as the model. Collectively, 
the deviated values maximise the loss between the intended function and the modi-
fied function. Adversarial training is to generate a sizeable, perturbed input dataset, 
label the correct class, and use such perturbed input data as the training data to train 
the machine-learning model. Thus, the system becomes more secure because attack 
samples have been seen during the training phase. The technique is considered the 
accepted procedure by which to defend against the perturbation attacks discussed in 
the previous section. In this case, the system has seen perturbed inputs.

Traditionally, adversarial training was used for image classification in 
computer vision [67]. The technique is now adopted in sensitive domains such as cy-
ber-physical systems [45], critical infrastructures [46], and industrial-control systems 
[47]. With adversarial training, the training data can be perturbed to represent the 
complexity of the physical system, e.g. in relation to actuator constraints in water sys-
tems [45]; voltage, current data, short-circuit fault, line maintenance, remote tripping, 
and relay settings in a power grid [46, 47].

2.4.6. Patching software
A patching of software vulnerability represents an effective approach 

by which to defend against fuzzing attack. Conceptually, this is like the adversarial 
training described above; with software being fuzzed to find, and eventually patch, 
vulnerability. There are two advantages to the patching of software. First, non-limita-
tion solely to the securing of vulnerability, but also an increasing of complexity in the 
software execution path. The disadvantage of fuzzing is that it relies on code coverage 
[49]. This is to say that, the larger the code, the less successful is the fuzzing attack. 
Thus, fuzzing would not discover all the execution paths of the software following 
software patching. Second, the authors of [50] point out that the application of differ-
ent AI techniques in fuzzing the same problem can lead to significant differences in 
the discovery of execution paths for attacks. An increases in the number of execution 
paths as software is patched can lead to a lowering of the success rate where fuzzing 
attacks are concerned.

2.4.7. Defensive distillation
Rather than having a machine-learning model that outputs a class with 

a high probability, the defensive distillation technique [59] suggests that the model 
smooths the probability of the output class. This causes the probability of the model 
generating one class to be similar to the probability that the model generates the oth-
er classes. The technique is thus suitable when it comes to defending against mod-
el-stealing attacks. One variation of the technique [58] is for the classifier to output 
only the top-n classes with the highest probabilities. This would limit the adversary’s 
knowledge of what classes would have a low probability with a given sample. The 
technique can be enhanced further where only the top-1 class is outputted. Although in 
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[58] the authors observe that there was no significant advantage in defending against 
model stealing attacks using the top-1 defence, they still believe this to be the logi-
cal defence technique, given the way it provides users with very limited information.

3. Future directions
The concept of AI-based cyberattacks has emerged from the convergence 

of AI algorithms, a rapid increase in computational power, application development 
and operation advancements, and the ready availability of AI-based implementations 
for adversarial adoption.

Future AI-based attacks are also determined by attacker motives. An 
increasingly significant threat is posed by lucrative opportunities for the adversary 
through cyber threats posed in contemporary times that involve hijacking of systems 
and encryption of user data, even as the latter are held for ransom (i.e. through ran-
somware), with user payments in cryptocurrency form demanded. Such opportuni-
ties may emerge through AI-based attacks that assess the vulnerabilities of victim 
machines, in advance of their sending a ransomware payload through to them. Mo-
tives other than financial gain can include terrorism, business competition (e.g. as bots 
spread fake news), hacktivism or the expression of political views. The adversarial AI 
techniques discussed in this work (Section 2.1.) can be used to achieve such motives.

As we have discussed through the analysis reported in this contribu-
tion, the ability of computing platforms to thwart the AI-based cyberattack spectrum 
depends on the following observed aspects:

1. the design of computing platforms resilient to AI-based adversarial threats, not 
as an afterthought to production, but rather via an awareness that everybody 
has responsibility (as part of the DevSecOps paradigm);

2. the design of applications (web-based, mobile, and Cloud) that are resilient to 
AI-based cyber-threats, by way of the prevention of data capturing and fostering 
of attacker learning through the provisioning of feedback, i.e. a reduced amount 
of feedback data provisioned to end-users given the possibility of comprising 
both legitimate and adversary class;

3. the design of network security controls adopted in a network, with a view to 
cyber-threats arising through AI engine exploitation being thwarted (future 
directions for such activity may include egress and ingress packet-filtering 
based on detection of anomalous feedback patterns (statistical as well as 
pattern-based) that are moving through the network;

4. the identification of opportunities to obfuscate-neural network operations, 
parameters, and generated outputs, and the adoption of a  black box-based 
framework by which to prevent the adversary from exploiting system weakness 
in provisioning of clearly indicative data to the adversary;

5. adoption as common practice of security by design, even as heterogeneity 
is incorporated in the nature and type of IT and Operations Technology (OT) 
devices that comprise a modern-day Information Communication Technology 
(ICT) platform (i.e. IoT and edge devices, digital controllers, Supervisory Control 
and Data Acquisition (SCADA) systems, Cloud servers and mobile devices) -  
design should include options to prevent AI-based cyber threats from being 
perpetrated against the holistic platform identified above.

Future adversarial AI attacks will become more pervasive over time. In 
modern Internet settings, the generation, exchange and processing of data rely on 
remote data operations, including those found in the evolving discipline of Industrial 
IoT (IIoT). As we have discussed in Section 1, each data- exchange end point on the 
Internet is vulnerable to exploitation. Modern society has become more dependent on 
the integrity and availability of such cyber-services as are seen in banking and critical 
infrastructures. For example, the integration of IoT devices with back-end Clouds is 
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a common practice in contemporary computing domains including critical infrastruc-
tures, as where the aims are electricity distribution, load balancing, and feed-in tariff 
in smart grids. The ability of the adversary to determine IT/OT vulnerabilities within 
a smart grid may prove catastrophic to the routine operations of critical infrastructure, 
which is essential to provision routine services such as electricity distribution to citizens.

Another emerging field of study is the digital forensic readiness of  
AI-based systems. Essentially, the vulnerabilities of such systems can be exploited 
by the adversary through the adoption of technologically-advanced tactics, including 
the circumvention of facial recognition systems, the bypassing of the security controls 
of AI systems, and the deliberate injection of falsified data into the communication 
stream. By analysing such empirical data, it is possible to hoard the right data types 
and data artefacts as may help a digital forensic investigation undertaken as part of 
post-incident analysis.

4. Conclusion
AI techniques have gained use, not only to defend traditional network 

systems, but also to attack their implementations. This is made possible because the 
modern Internet is exchanging not only raw data, but also processed data such as 
that generated by Cloud-based machine-learning services. This phenomenon is seen 
to affect the cyber infrastructure comprising enterprise, mobile, and autonomous sys-
tems, as these engage in the exchange of both sensory data and AI analytical data.  
Such infrastructure has become the playground for AI-based cyberattacks. The num-
ber of possibilities to attack –  from reconnaissance, execution, persistence, privilege 
escalation, command/control, to data exfiltration-manifests as too large a spectrum for 
humans to analyse zero-day attacks. However, adversaries are one step ahead, using 
knowledgebase and known AI techniques to launch AI-based cyberattacks.

AI techniques are suitable for defining attack vectors because they can 
handle large volumes of data. In this paper, we described machine-learning-based 
techniques for adversarial AI. These techniques are adopted by the adversary to car-
ry out adversarial AI attacks, with the derivatives of neural networks playing a signif-
icant role in fostering the development of novel AI attack vectors incorporating both 
spatial and temporal data in the emulation of legitimate data. We further classified  
Adversarial AI into behaviour mimicry (which employs stealthy attacks, perturbation 
and fuzzing techniques) and rational bot (which employs the model-stealing tech-
nique). Behaviour-mimicry techniques aim to resemble normal data, thus infiltrating 
victim machines. Rational bots employ the knowledgebase that was obtained from the 
model-stealing technique to facilitate the design of zero-day attack vectors.

Also discussed here are 7 methods by which to defend against AI-based 
cyberattacks. The mitigation approaches leverage the disadvantages understood from 
the adversarial AI techniques. And, even in the face of these countermeasures, adver-
sarial AI attacks will be – as we indicate – more pervasive, as society becomes more 
dependent on cyber-data exchanges that offer a plethora of opportunities for adver-
saries to further their motives effectively.
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