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Abstract
In this paper, we propose a novel, collaborative distributed platform to dis-

cover the presence, or analyse the configuration, of what we call semi-active elements.  
By doing so, we revisit the ideas initially proposed in [1, 2] with the Netalyzr tool and in [3] 
with Inmap-t. Our contributions lie in a simplified and more powerful design that enables 
the platform to be used for a variety of tasks, such as conformance verification, security test-
ing, network configuration understanding, etc. The specifications, design and implemen-
tation choices of the platform are presented and discussed. Two use cases are revealed to 
illustrate how the platform can be used. We welcome any interest shown by others in de-
ploying our tool in different environments, and encourage any subsequent collaboration in 
improving its expressiveness. 
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1. Introduction 

NMAP is a well-known tool [4]. It enables, among other things, a client machine to 
fingerprint a remote one. We want to do the same thing for the devices on the 

path between two machines communicating together. In theory, this is useless because 
the devices on the route should never interfere with the application-layer connection. 
This is the well-known end-to-end principle proposed in the 1960s by Baran [5] and 
Davies et al. [6] and subsequently implemented in the TCP/IP architecture. The paper 
by Saltzer et al. [7] precisely articulates the arguments in favour of such a design for 
distributed systems.
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These principles are certainly still valid. A TCP connection is, indeed, an end-
to-end connection. However, the end of the connection is not always where the user expects 
it to be. For instance, imagine a user whose browser is configured to use a web proxy. When 
the user visits a web site, their view of the world tells them that they are connected to that 
web site. In reality, the TCP connection initiated by the browser ends at the machine where 
the proxy server resides. This is, of course, a trivial example. In today’s networks, there are 
many other such instances where a device on a path between two communicating endpoints 
could interfere with their communication. Such interference can take various forms and take 
place at various layers. It can be as drastic as changing the TCP endpoint, such as in the case 
of the web proxy, but it can be more subtle, such as changing the source or destination IP  
(in the case of a NAT device) or delaying packets (in the case of a traffic shaper). As in [3], we 
collectively refer to all such devices as semi-active components.

Semi-active components aim at being beneficial for the end user. For in-
stance, they can improve security (firewall, WAF, IPS, etc.) or performance (CDN, web proxy, 
etc.); they can also provide better access to the network (traffic shaper). Unfortunately, 
like the proverbial double-edged sword, their mere existence can also be detrimental 
to security. If compromised or misconfigured, the capabilities of such devices could be 
misused by attackers to their advantage. The same holds true if an intruder manages to 
insert their own semi-active component into a route between two devices.

One would hope that cryptography could come to our rescue to ensure true 
end-to-end connectivity. This is indeed the expected benefit when using TLS [8] (or IPSEC 
[9]) at the transport layer (or network layer). Once more, the devil lies in the details. The 
reality is that it is almost impossible for end users to be sure that, under the hood of the 
various layers, their connection is truly an end-to-end one. For instance, in many compa-
nies, a Web Access Firewall (WAF) will intercept, decrypt and re-encrypt TLS connections 
to protect end users, effectively deceiving them. From a networking point of view, there is 
almost no difference between a genuine WAF, installed by the right authorities, and a ma-
licious device, inserted by an attacker, carrying a so-called man-in-the-middle attack, as 
described later.

As we can see, semi-active components matter. It is very important to 
verify that the legitimate ones behave the way they should, i.e. are not compromised or 
misconfigured. It is also very important, perhaps even more so, to detect the presence 
and identity of any other semi-active component in the routes we use. The framework 
we propose in this paper answers the following two research questions:

1. How to detect and identify semi-active components between two 
endpoints?

2. How to verify that a known semi-active component is behaving the 
way it should?

To answer these questions, the paper is structured as follows. Section 
2 positions our work with respect to state-of-the-art practices. Section 3 presents the 
architecture of our new platform. It starts by introducing some terminology (3.1), then 
clearly states its specifications (3.2), discusses its design choices (3.3) and ends with 
a description of its implementation (3.4). Section 4 proposes two simple use cases in 
order to exemplify the usefulness of the platform, its simplicity and modularity. Section 
5 concludes the paper by mentioning a number of different use cases and by inviting 
readers to contribute to this collaborative platform, either by deploying one of its ele-
ments in their own networks or by contributing to one of its modules.

2. State-of-the-art Practices
Semi-active components have mostly been looked at in the literature through 

the prism of man-in-the-middle (MITM) attacks, in which an intruder intercepts a connection 
and impersonates one of the two communicating parties. Many variants of these attacks  
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exist but the most frequently mentioned do take advantage of weaknesses in the ARP or 
the DNS protocols, as explained in [10]. Solutions have been proposed to detect these  
attacks. They are usually quite specific, focusing on the symptoms of a single type of threat.  
For instance, in [11] the authors propose relying on the delay introduced by the attacker 
during the processing of packets. This method, although intuitively correct, has a significant 
drawback. It requires knowing the ground truth value for each connection and thus it cannot 
easily be generalised to connections taking place on the Internet. In [12] the authors propose 
the use of a neural network to study the response behaviour and classify the connection.  
The authors of [13] note that deep-learning-based approaches are not robust to pertur-
bations and that knowledgeable attackers may use adversarial attacks to bypass such de-
tection. Finally, Trabelsi et al. propose a solution for detecting MITM attacks in the context 
of local area networks (LANs) [14]. Their approach is interesting in the sense that it also  
detects threatening devices by running some active tests. They do so in order to detect those 
who act as routers. It does rely on ARP cache poisoning though, which is possible in their tar-
get networking environment, LANs, but impractical on the general Internet.

In [15] the authors present a detection system that identifies web proxies. 
Their system records and analyses incoming packets to match them with well-known 
proxy patterns. To read the content of the encrypted payload and identify the patterns 
in the data, their method uses SSL stripping [16] to disable TLS. This method assumes 
that we can downgrade a connection from HTTPS to HTTP and is thus impractical. More-
over, it also creates a security gap as all the traffic between their detection system and 
the end-user is now in clear text. Chiapponi et al. present in [17] a detection method 
aimed at bots using proxies to scrape web sites. This method is based on the round-
trip time difference for the packets sent from the server to the proxy and those sent to 
the bot itself (through a TLS tunnel). A large measurement campaign validates this idea 
experimentally, and the data are then used in [18] by Champion et al. to find a method 
capable of geolocating the machines involved.

Our new contribution has mostly been inspired by two other pieces of 
work: Netalyzr, by Kreibich et al., published a dozen of years ago [1, 2], and the more 
recent work by Vitale et al. [3] on Inmap-t.

As far as we can tell, Netalyzr [1] represents the seminal work in the  
detection of semi-active components. It is based on a client-server architecture. A user 
connects to the server and downloads a Java program which runs within their browser. 
This program executes a series of tests against the connection, with the server aiming 
at detecting the presence of semi-active components between the client and the server.  
For instance, in [2] the authors use it to discover the presence of a proxy server between 
a client and their server. In their tests, they were sending well-crafted packets to trigger 
some side effects induced by semi-active components. Since both the server and the Java 
program are synchronised, they know what is supposed to be sent at any point in time.  
By comparing what they receive with what they expect to receive, they can infer the pres-
ence of some semi-active components. For example, in one test of [2], the server replies 
to the initial SYN packet of the establishment of a 3-way TCP handshake, by a TCP RST 
packet as opposed to the expected SYN-ACK one. If no proxy exists between the client and 
the server, the Java program will indeed receive the sent RST packet. If a proxy exists, its 
kernel will, in most cases, complete the 3-way TCP handshake with the client before re-
ceiving the RST packet from the server. The Java program infers the existence of a proxy 
as soon as it receives the unexpected SYN-ACK packet. This solution has been available 
as a free service for several years but has unfortunately been discontinued since 2019. 
Maintenance costs of the service and the issues associated with the Java language are 
the reason for its demise [19]. Although Netalyzr represented a laudable first attempt at 
detecting semi-active components, it was only capable of detecting them on paths that 
were leading to the targeted test server. A knowledgeable attacker would therefore have 
had little difficulty in circumventing the detection provided by this solution.



www.acigjournal.com

applied cybersecurity  
& internet governance

ACIG, VOL.1, NO.1, 2022                  DOI: 10.5604/01.3001.0016.1461 4

Inmap-t, proposed in 2021 [3], aimed at leveraging the Testing and 
Test Control Notation Version 3 standard (TTCN-3) [20] to test the security impact of 
intra-network elements. TTCN-3 is a standard maintained by ETSI that offers a mod-
ular testing language and an independent execution environment. Its usage is nor-
mally reserved for testing the quality and conformance of a given implementation 
of a client or server for a specific protocol. In their work, the authors instead lever-
age the environment to test the network connection taking place between two ma-
chines, namely, to detect the presence of semi-active components such as an Intrusion  
Prevention System (IPS) [21] or a firewall. As opposed to Netalyzr, the authors now of-
fer a fully distributed environment populated with numerous devices that can commu-
nicate together and test a number of different paths. The results, while promising, also  
reveal the drawbacks associated with the choice of TTCN-3 as an underlying platform.  
According to the authors, the learning curve to use this environment is very steep 
and the heavily C++-inspired notation of the configuration files does not help in that  
regard. Furthermore, TTCN-3 comes with its own execution environment whose instal-
lation is quite heavy and cumbersome. Last but not least, the software architecture 
design imposes the constraint of grouping all possible tests into a single binary. The 
net result is that every new test increases the overall size of the code to be pushed 
on all participating machines. Every modification to an existing test requires pushing 
a whole new version of all tests to all machines.

Netalyzr and Inmap-t have shown the value and the feasibility of detecting 
semi-active components. They also have limitations that hold back their wide adoption for 
carrying out these tests systematically. In this work, we leverage the lessons learned from 
these previous attempts and come up with an architectural design, which not only addresses 
their shortcomings but also greatly increases the diversity of tests that we are able to run.

3. Architecture

3.1 Terminology
Our work leverages the key concepts developed in [3], but greatly simplifies 

the architecture and, more importantly, enriches its capabilities with novel contributions.

In [3] the authors had to introduce the TTCN-3 terminology for their system 
to be understandable. It included several well-defined terms, such as Main Test Com-
ponent (MTC), Parallel Test Component (PTC), Test System Interface (TSI), Port, Module 
and Verdict. Although we are not using any of these notions, we retain two key ideas: i) 
test case and ii) test campaign, and we redefine them as follows:

Test case: A test case is a small program running in a synchronized way on two (or more) 
machines to test a specific property of an element in a given route. It de-
fines the details of the sequence of packets to be sent, as well as the in-
formation exchanged between the machines while running the test case. 
It is typically defined by a finite state machine.

Test campaign: A test campaign is a larger program running in a synchronized way on 
two (or more) machines to characterize one or more elements in a giv-
en route. It can be seen as a sequence of test cases or of other test cam-
paigns. It is typically defined by a decision tree whose main components 
are test cases or test campaigns.

Primitive: A primitive is a simple function that we define. Its implementation remains 
hidden from the user and usually involves some Python and Scapy [22] 
code. Test cases can only be made up of primitives. This enables us to com-
pletely separate the definition of a test case from its implementation. The 
creator of a test case is not going to be exposed to Python code. Moreo-
ver, if we decide to change from a Python implementation to a C++ one, 
for instance, the test cases and test campaigns would remain untouched.
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3.2 Specifications
In this section we describe the high-level specifications of what we aim 

to achieve in using our new solution. The next subsections will cover our design and 
implementation choices (subsections 3.3 and 3.4).

At the highest level, what we want to do is to build a system that enables 
us to answer the two research questions defined in section 1, namely:

1. How to detect and identify semi-active components between two 
endpoints?

2. How to verify that a known semi-active component is behaving the 
way it should?

Building upon the lessons, drawbacks and weaknesses from previous 
work [1, 3], we want our solution to satisfy the following five properties:

1. Ease of use
2. Ease of deployment
3. Modularity
4. Scalability
5. Flexibility

We now briefly elaborate on each of these properties.

Ease of use: We target end users who do not have any particular networking or security 
knowledge. The solution must hide all its low-level complexities and pro-
vide a simple interface for them, such as verifying whether or not a WAF 
monitors their connection to the Internet.

Ease of deployment: Our platform aims at being a large, open and collaborative distrib-
uted system. The more people deploy our solution at their site, the richer 
the system becomes. This precludes a complicated time-consuming sys-
tem setup, such as the one required by a TTCN-3 based solution.

Modularity: The creation of a new test campaign comes down to combining previous-
ly defined test cases and/or test campaigns. The same holds true for test 
cases that can take advantage of previously defined finite state machines 
by “calling” them in. Our software environment must facilitate such code 
reuse of test cases and campaigns by defining them as well-defined mod-
ules, with precisely specified input and output.

Scalability: As opposed to the solution described in [3], the definition of a new test 
case should not increase the code size of all existing test campaigns. 
Also, the cost and complexity for distant machines to run a given test 
campaign should be independent of the number of machines partici-
pating on our platform and running other test campaigns independent-
ly on their own.

Flexibility: As opposed to the solution described in [1], we do not wish to limit our analysis to 
the routes that lead to a single server providing the Java code. We also want 
to avoid being confined to the sole routes connecting the machines participat-
ing on the platform, as in [3]. We want to be able to test the properties of the 
route between any of the end user machines and any server on the Internet.

In the next subsection, we outline the design choices we have made to 
build an open platform that would satisfy these properties.

3.3 Design
What we are trying to achieve can be summarized as follows:

• Some remote parties decide to test the properties of a specific 
route on the Internet.
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• They agree on what data to send: where, when and how. This is 
defined in the test campaign that they all agree to run.

• To evaluate a given property, they compare the packets they 
receive to the ones they expect to receive, as per the definition of 
the test campaign.

• They adjudicate on the results of the tests. 

To justify our design choices, we present them according to three major compo-
nents of the platform we have built, namely:

1. Overall architecture
2. Data and Control communication channels
3. Test cases and test campaigns

Architecture: Our architecture consists of three types of machines: worker, proxy and master.
A worker is a machine that runs a test campaign – either the client ma-
chine that wants to perform a test on its connection path to another end-
point or a trusted machine registered in the network.
A proxy node, on the other hand, does not perform any test. It should 
be accessible to the remote workers so that they can communicate  
together when, for instance, they are unreachable from the Internet be-
cause of a firewall. 

The master node role puts the workers (and the proxy when necessary) 
in touch and shares with them the test campaign they have to run. Once 
this is done, the workers do not use the master node anymore1.

Test cases and test campaigns: Test cases are defined thanks to a graphical user in-
terface using a finite state machine formalism. They indicate by means of 
well-defined primitives what packet should be sent by whom to where, 
what to do when receiving a packet, what field to check, etc. These  
finite state machines can then be combined into test campaigns, under the 
form of decision trees. Test campaigns are stored within the master node 
and pushed to workers when they need to be run. All workers receive the 
same test campaign and interpret it according to the role each has to per-
form. To synchronise their execution, the workers do exchange control mes-
sages using the channels described hereafter.

Data and control communication channels: We use two channels to enable the work-
ers to execute a test campaign: i) a data channel and ii) a control channel. 
The data channel is used to send packets on the route we want to test. 
The control channel, as its name implies, is used to exchange control mes-
sages between the workers to synchronise the execution of the tests. It is 
worth noting that the data channel does not necessarily follow the same 
route as the control channel.

At this stage, it is probably worth providing a simplified high-level exam-
ple of what our solution aims at doing and how this can be achieved.

Let us imagine that we have two workers W
1
 and W

2
, a proxy P, a master node M and a DNS 

server D. W
1
 wants to know whether its DNS requests to D are intercepted by a third par-

ty and redirected to another DNS server that would provide a different IP for a given re-
quest R than the one D would return. This is one of the classical ways to redirect web 
request to a WAF without having to touch the user’s machine configuration. Let us fur-
ther assume that both W

1
 and W

2
 are located behind firewalls and cannot be contacted 

directly by one another. This situation is represented in Fig. 1.

1  This is a major difference with the architecture 
proposed in [24], in which all communications 
had to go through some central component. This 
represents a bottleneck when many workers are 
running tests at the same time.



www.acigjournal.com

applied cybersecurity  
& internet governance

ACIG, VOL.1, NO.1, 2022                  DOI: 10.5604/01.3001.0016.1461 7

To run this test, the following steps must be performed:

1.  W
1
, W

2
 and P register with M and maintain a secure connection to it.

2.  W
1
 issues a request to M to run the test campaign T with W

2
.

3.  M assigns P to act as a proxy for the control channel between W
1
 and  

  W
2
.

4.  Both W
1
 and W

2
 establish an IPSEC tunnel to P and use them to  

 establish a  trustworthy end-to-end TLS connection between W1  
 and W

2
, passing through P. In the latter, we will refer to that secure  

 end-to-end connection as the control channel.
5.  M uses the existing secure connections to push T to W

1
 and W

2
.

6.  W
1
 and W

2
 send R to D.

7.  W
2
 sends the result of the DNS answers to W

1
 through the control  

 channel.
8.  W

1
 compares what it received from W

2
 with its own DNS replies and  

 reaches a conclusion for the test accordingly2.

This very simple example highlights a couple of important elements. First, 
the route to test is not necessarily between the nodes we own. Second, the control chan-
nel is not necessarily a direct connection between two workers, it can go through a proxy 
when needed. Third, the campaigns are uploaded on a case-by-case by the master node 
to the workers. Fourth, the campaigns are functions whose input parameters are instan-
tiated by the workers and agreed upon via the control channel.

Figure 1. Representation of the topology for our use case.

2  This is a simplified view of the world. We are 
well aware of the possibility, in some cases, to 
obtain distinct responses from a given server  
D for the same request R issued by distinct clients. 
The identification of the reasons for this to hap-
pen could, in fact, be an interesting use case for 
our platform but such a discussion lies outside the 
scope of this paper.
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The next subsection gives more details on the way this platform has been 
implemented.

3.4 Implementation
The previous subsection presented the design of our solution based on 

three elements: the tests, the communication channels and the architecture. In the fol-
lowing subsection, we describe the implementation of each of these.

Test case: We represent a test case using finite state machines. The four main compo-
nents that constitute these state machines are the following:

• State
• Transition
• Action
• Nesting feature

To present each of these components we use the simple example presented in 
Fig. 2. We present two simple, yet genuine, use cases in section 4.
State: A state is represented by a light grey box with a blue header in Fig. 2. 

It is defined as a sequence of actions. Every finite state machine starts 
with an initial state that triggers an event STARTED at the beginning. 
A state possesses its own local variables. To transition from one state 
to another, we need to trigger an event whose name matches a tran-
sition that links these two states.

Transition: A transition is represented by a light grey box with a dark grey 
header (Fig. 2). It represents a direct path from one state to another. 
To leave the current state, an event with the same name as a transition 
linked to that state must be triggered. Depending on its implementa-
tion, the execution of a primitive can directly generate events respon-
sible for this change of state. This is, for example, the case when we 
call the DONE primitive to trigger the DONE event. Events can also be 
generated by external elements, such as the reception of a packet or 
a timeout. A transition may use guards to specify the conditions on 
the local parameters of the current state.

Action: We refer to a command that a state can execute as a state action. 
It can fall into two categories, depending on the moment we want 
the program to execute it:

• An Entry action executes a primitive as soon as we enter a new 
state.

• An Exit action executes a primitive when one of the possible 
events to leave the current state has been caught (but after 
having executed all the Entry actions).

Since states possess their own set of local variables, we define a transi-
tion action as the special action that uses the SET primitive to assign the 
value from one state local variable to another state local variable.

Nesting feature: To create modular, understandable and easy to modify test 
cases, we implement something referred to as the nesting feature. 
This mechanism enables us to call nested finite state machines. We 
carry out this operation with the CALL primitive in the parent. Then we 
use the GET_PARAMETERS primitive to retrieve the input arguments in 
the nested state machine. The number of parameters associated with 
this primitive must match the number of parameters when the par-
ent uses CALL (without the name of the state machine called). This is 
shown in Fig. 2, where the MAIN state machine calls the DOUBLE one. 
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Similarly, the number of output parameters of the CALL primitive must 
match the number of parameters provided by the RETURN primitive. 
The idea behind this is to create a higher level of abstraction that is 
similar to traditional programming libraries. We take advantage of 
other finite state machines already written, so that we can reuse them 
across different test cases.

 The transformation from a state machine representation to executable 
code is a key functionality that our solution implements. We use Xstate 
[23] as it provides a complete set of features to easily manage state  
machines, such as adding states, actions or transitions. Its main advantage 
is that we can export the representation of the state machine into JSON 
format afterwards. Our Python program then parses this JSON to auto-
matically obtain the program to run for the test case.

Figure 2. Representation of our implementation of two finite state machines. 
The first one (top) is responsible for selecting a random value between 1 and 2. 

If the number is 2, it doubles this value by calling the second one (bottom).  
At the end, the main finite state machine prints the result and returns it back.
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Test campaign: As we mentioned earlier, test campaigns are composed of test cases. 
When test cases end, they can output different values using the RETURN primitive 
followed by the returned values. We use decision trees to aggregate their results 
and define test campaigns. Let us imagine that we want to do a test campaign 
that runs the MAIN test case two times consecutively and we want to know the 
sum of both results. The test case can only return 1 or 4. The decision tree rep-
resenting the test campaign is shown in Fig. 3. We start from the root and each 
node represents a test case where its return value gives us the next node in the 
path. The test campaign finishes when it reaches a leaf node. The possible re-
sults are thus 2, 5 or 8.

In that case the example is trivial, yet it shows how to combine test cases 
into a test campaign to answer questions that are more complex. We can 
reuse unitary tests for different test campaigns. This hides the complexity 
from the user and it provides us with a modular solution.

Data channel: The data channel enables us to send (or receive) packets to re-
mote machines that we do not necessarily control through the S E N D  
(or WAIT_PACKET_SIGNAL) primitives. We emit, filter and sniff packets using the 
Scapy library in Python. Each transmission of a packet triggers a PACKET_SENT 
event. Received packets that passed the filter phase are stored in a FIFO data 
channel queue to ensure that no packets are lost. When the program executes 
the WAIT_PACKET_SIGNAL primitive, it checks whether packets are available in-
side the queue whose name was given as argument. If this is the case, a PACKET_
AVAILABLE event is generated and the oldest packet in the queue is processed.  
Otherwise, after a certain time has elapsed, it raises a TIMEOUT event.

Figure 3. A decision tree that repeats sequential test cases until it reaches  
a leaf node where it outputs its result.
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Control channel: We specify the behaviour of the control channel in the definition of the 
state machine to synchronise the workers. This comes with its dedicated set of 
primitives and events to maintain the correct flow of the state machines.

• The primitive WAIT_READY_SIGNAL triggers the event READY when 
the node successfully creates a control channel.

• The primitive WAIT_SYNC_SIGNAL triggers the event SYNC_
AVAILABLE when the node has an available sync message in the 
control channel queue.

• The primitive SYNC triggers the event SYNC_SENT when the node 
sends a sync message.

We define a sync message as a message whose reception acts as a check-
point. It is responsible for the synchronisation of the worker nodes. A sync 
message can embed data to provide a remote node with some information 
securely using the control channel. We use the same queuing mechanism 
as the data channel to listen constantly for sync messages. This guar-
antees that no packet is lost due to concurrency issues between worker 
nodes. We call it a control channel queue and it is unique for each control 
channel created between two nodes. Section 4 provides two use cases 
to show how our framework takes advantage of it. Finally, to ensure that 
we can start sending packets through the control link, we use the WAIT_
READY_SIGNAL primitive. As soon as the channel is ready, it triggers the 
event READY to resume the execution of the test case.
In order to protect our control channel, we use TLS and IPSEC where nec-
essary. Our solution uses TLS with mutual authentication to link two re-
mote worker nodes. We encapsulate TLS using IPSEC to create a tun-
nel that connects the worker nodes and a proxy when they are hidden 
behind firewalls. It enables the workers to redirect the traffic so that they 
can initialise the control channel. To ensure that all nodes perform proper  
mutual authentication, we designate a master node as the only trusted author-
ity. This is the sole node able to sign the certificates associated with the differ-
ent public keys announced by the other nodes. This architecture enables us to 
revoke the certificates of compromised machines using the OCSP [24] protocol.

Architecture: In order to assign the test campaigns to the different nodes of the net-
work, we use Ansible [25]. Its use only requires Python and SSH, which are often 
installed by default on Linux machines. The description of that part resides out-
side the scope of this paper.

In the following Section, we provide two simple use cases, one for UDP 
traffic and the other for TCP connections, to exemplify how these concepts can be put 
into action from a practical point of view.

4. Use cases

4.1 DNS redirection
Our first use case is the one eluded to in subsection 3.3 in which a cli-

ent tries to determine if their DNS server returns different results than the ones oth-
er users are seeing for the same domain name. There are many reasons why network 
administrators routinely do this. To render things concrete, we can think of a network 
that uses a Web Access Firewall to check any outgoing HTTP request in order to detect 
those coming from possibly compromised machines trying to “call home”, or to block re-
quests sent to sites forbidden by the local security policy. This is a very common prac-
tice in enterprise networks. To force the traffic to go through the WAF, several techniques  
exist, such as using DNAT or WPAD. Another simple technique consists of using DNS. 
Whenever a client uses DNS to resolve the name of a web server it wants to access to,  
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the returned IP is that of the WAF instead of the actual machine. The client initiates the con-
nection to the IP of the WAF, which decides whether the request is to be blocked or not. If 
the traffic is allowed to go through, the “Host:” HTTP header enables the WAF to forward the 
traffic to the right destination. There is a problem if the initial DNS request was not made 
to generate some HTTP traffic afterwards. If this is indeed the case, this approach prevents 
the establishment of the connection, since the WAF does not find in the application payload 
the identity of the server to contact on behalf of the client. Consequently, using this tech-
nique requires using heuristics at the DNS server level to decide whether or not to RETURN 
the real IP or the IP of the WAF to avoid blocking non-HTTP traffic. Domain names starting 
with “www.” will typically be resolved by the WAF IP, whereas names starting with “ftp.” 
or “smtp.” will not, for instance.

In our use case, a client wants to determine whether or not their network applies 
such DNS-based protection and, if so, which heuristics are being used at the DNS server level.

Setup: We have a client W1 who wants to detect if DNS requests sent to D are redi-
rected using another remote machine W

2
. Both workers W

1
 and W

2
 have regis-

tered their availability to the master node M and maintain a secure connection 
to it. Upon W

1
’s request, M notifies W

2
 that W

1
 wants to run a test campaign with 

it. If W
2
 agrees, M, which knows that both are sitting behind a firewall, assigns 

a proxy P and provides the test campaign T along with its parameters to all 
the parties. W

1
 and W

2
 establish an IPSEC tunnel to P and then a TLS connection 

between them through P. They finally instantiate two separate data channels 
with D. We use Fig. 4 to illustrate our architecture. The client can then repeat 
this process with different requests to identify the heuristics used, if any, or 
with other W

K
 workers to double check its results.

Test case: We present here how this use case can be modelled as a finite state 
machine. As mentioned in subsection 3.4, we rely on the Xstate graphical 
interface [23] to create the state machines and to automatically generate 
a JSON file that contains all their semantics. That file is then sent to both 
workers, parsed, and interpreted by a generic piece of code capable of ex-
ecuting any such state machine. It is worth noting that, even though both 
workers execute different tasks, they both interpret the same file. We have 
made this design choice to avoid having numerous files associated with 
a given use case that could, if modified independently, become out of sync.  
Having only one file per use case for all workers eliminates this risk.

Main finite state machine: This test case can be represented by only 7 states, 
which are represented in Fig. 5. It is thus easy to read and understand what 
this use case represents. The simplicity is obtained thanks to the modularity 

Figure 4. Architecture used for the DNS use case.
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of the design. Indeed, each state in this finite state machine corresponds to 
a full finite state machine that remains hidden at this level of abstraction. We 
will briefly list the various states and their functions. We discuss each state 
in more details afterwards.

DEFINING_TIMEOUT_TARGET: a catch all state to handle all timeout   
 events in a generic way.

CONTROL_CHANNEL_SET_UP: builds the control channel. 

VARIABLES_SET_UP : builds the DNS  packet according to the input  
 provided by W

1
 to M and returns the name of the data channel queue  

 on which the received packets are stored.

DNS_REQUEST: sends the DNS request and waits for the reply.

REMOTE_REPLY_GETTER:  exchanges the DNS  replies between the  
 worker nodes.

DNS_REPLIES_COMPARISON: compares the DNS replies.

CONTROL_CHANNEL_DISCONNECT: closes the control channel. 
In what follows, we will briefly describe all the state machines required to 
run this use case, starting from the main one at the highest level of abstrac-
tion, and following by the ones that are invoked from within this main one.

MAIN: This state machine is the main component of our test case. Its ex-
ecution is triggered by M. It runs on W

1
 and W

2
. 

Like every state machine, its initial state is named as INITIALISING. 
Launching the execution of the finite state machine (or invoking a fi-
nite state machine, in the case of a nested feature) generates the event 
STARTED which triggers the first transition of the state machine. 
In this state machine, all subsequent states will invoke the CALL prim-
itive to execute another state machine. 
The end of the state machine is characterised by a state named END-
ING, which invokes the RETURN primitive with a list of arguments that 
represent the results of the execution of the state machine.

DEFINING_TIMEOUT_TARGET: This first state is very specific. It only invokes 
the primitive REDIRECT before generating the DONE event to move to 
the next state. The primitive REDIRECT associates an event with a spe-
cific state. In this case, we associate the TIMEOUT event with the ER-
ROR state. This means that, no matter where we are in the finite state 
machine, if the TIMEOUT event is raised then the next state of the state 
machine will be the ERROR state. This is a convenient and simple error 
handling mechanism. 

CONTROL_CHANNEL_SET_UP: This state uses the CALL primitive to invoke 
another state machine, the role of which is to create the control chan-
nel between W

1
 and W

2
. 

Whether this control channel goes through a proxy or not is irrele-
vant for the use case and remains hidden to the creator (or user) of the 
state machine. The usage of a proxy will be required if both are hid-
den behind a firewall. If only one is unreachable, that one will be the 
one initiating the connection to the other one. If both are reachable, M 
decides which one initiates the connection.
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Generally speaking, it is M that, together with the test campaign, in-
forms the workers (and the proxy when needed) as to whether they 
have to initiate a connection (and to whom), or whether they have to 
be ready to accept a connection (and from whom).
When the invoked state machine has terminated, the TRIGGER prim-
itive is invoked. As its name implies, it triggers an event in order to 
move to the next state. The specific event triggered is the output of 
the called state machine. In this case, there is only one possibility,  
CONTROL_LINK_READY, but in the general case there could be several 
results leading to different states.

VARIABLES_SET_UP: This state is responsible for creating the same DNS 
request R on W

1
 and W

2
. All the low-level complexity is hidden behind 

the nested state machine. It will, for instance, create a UDP packet with 
destination port 53 corresponding to the DNS protocol while the source 
port is set as random. It also specifies the destination IP address and 
the requested domain name, as specified by W

1
 to M. 

In addition to the packet, the state machine defines a filter on the source 
port of the packet for the sniffer, so that the workers only listen to the DNS 
replies sent by D for the request R. The nested state machine links this filter 
to a data channel queue before starting to listen and push packets inside it.
At the end, the state forwards the name of the queue and the crafted 
packet to the next state. 

DNS_REQUEST: This state calls a nested state machine responsible for the 
emission of the crafted packets and the reception of the DNS replies on 
both W

1
 and W

2
. Its representation is shown in Fig. 6. The two worker nodes 

send the DNS queries to D using the SEND primitive. They process the DNS 
replies stored on the data channel queue using its name and the WAIT_
PACKET_SIGNAL primitive. The state then forwards the DNS replies re-
ceived to the next state to compare if they are the same on both workers.

REMOTE_REPLY_GETTER: Before disconnecting the control channel, we 
need to ensure that the DNS replies received by W

1
 and W

2
 are the same.

We use the sync mechanism presented in subsection 3.4 to fully syn-
chronise our state machines. The following steps show how it works 
in that specific case.

1. A worker node uses the SYNC primitive to send the payload of the 
DNS reply received within a sync message to the other worker.

2. It switches to a  new state using the SYNC_SENT event that is 
triggered and waits for an available sync message from the 
other node using the WAIT_SYNC_SIGNAL primitive.

3. When a  sync message is available on the control channel 
queue, the state machine triggers a SYNC_AVAILABLE event to 
leave the current state. The node finally extracts and stores the 
payload inside a variable. That variable is returned to the main 
state machine.

If an error occurs during the exchange and one of the nodes does not  
receive the sync message, the program triggers a TIMEOUT  event.  
Similarly to try and catch exception handling in standard programming 
language, this will be given back to the main state machine to generate 
the final error output.

DNS_REPLIES_COMPARISON: In this state W
1
 and W

2
 compare the payload of 

the two DNS replies. If the IP addresses are the same, we set the result 
of the test as EQUAL. Otherwise it is set as DIFFERENT. 



www.acigjournal.com

applied cybersecurity  
& internet governance

ACIG, VOL.1, NO.1, 2022                  DOI: 10.5604/01.3001.0016.1461 17

CONTROL_CHANNEL_DISCONNECT: Finally, we use this state to cleanly discon-
nect W

1
 and W

2
. Once again, we take advantage of the sync mechanism 

to perform this operation. In this case, W
1
 and W

2
 send a sync message 

when they are ready to disconnect. When they receive the remote sync 
message, the workers can terminate the control channel connection. 
This operation is necessary as the execution of the program on each 
node is concurrent, and we do not want one to disconnect while the 
other is still running some computation.

In our case study we have described how our solution is modular and sim-
ple. Indeed, we assign each specific task to an independent state machine. We can also 
easily modify the flow of the test case by removing actions, redirecting transitions to 
other states or calling entire state machines. In addition, the use case shows how easy 
it is to create, send and listen for packets using the primitives in our toolbox. In the next 
subsection, we show how we can take advantage of a data channel between two work-
er nodes to infer the presence of a transparent web proxy and discriminate between the 
various types that exist.

4.2  TCP proxy
To further assess the effectiveness of our solution, we use it to create 

a state machine that can classify a proxy acting as a man-in-the-middle. The proxies 
we study in this use case terminate TCP sessions between a client and a server with-
out any configuration on the client. As they are invisible to the client, we refer to them 
as transparent proxies. They pretend to be the server to the client in question for each 
TCP session and create another session with the real server to deliver the correct con-
tent to the client.

Proxy categories: To classify a transparent web proxy we can take advantage 
of the fact that its retransmission behaviour can fall into three categories. 
As represented in Fig. 7, a transparent proxy can either be:

• Synchronous, when it only processes and forwards the packets 
which are received with a FIFO approach.

• Asynchronous, when it immediately responds to the SYN packet 
sent by the client with a SYN-ACK and forwards the SYN packet  
to the server simultaneously without waiting for an ACK.

• Sequential, when it does not initialise any TCP session with the 
server before it receives a PSH-ACK packet from the client.

Test case: To verify if there is a web transparent proxy in the communication 
path, and its category, we define the following test case with two work-
er nodes W

1
 and W

2
 where they respectively play the role of the client and 

the server:

1. W
1
 and W

2
 create a control channel between each other.

2. W
1 sends a SYN packet on port 80 to W

2
 while we prevent W

2
 from 

sending the SYN-ACK reply.
3. W

1
 (or W

2
) listens for incoming SYN-ACK (or SYN) packets.

4. W
1
 and W

2
 send sync messages to each other to ascertain whether 

the other party received the expected SYN or SYN-ACK packet. These 
messages also embed the initial sequence number of the connection 
(set to NULL if W

2
 did not receive the initial SYN).

5. W
1
 and W

2
 notify each other with sync messages that they are ready 

to disconnect from the control channel.
6. W

1
 and W

2
 terminate the control channel connection.

Fig. 8 illustrates how the exchanges of packets on the data and control 
channels work. After it receives the information from the remote node, 
a worker can reason about the presence and category of a transparent 
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proxy. For instance, if W
2
 did not receive any SYN before a certain time, the 

test is over since we know that there is a sequential proxy3. If it received 
it, we check whether W

1
 received a SYN-ACK packet. If so, we conclude the 

presence of an asynchronous proxy. Finally, if no SYN-ACK packet has been 
received by W

1
, we compare the sequence numbers of the initial SYN packet 

for the TCP connection. If they are different, there is a synchronous proxy 
between the two nodes. Otherwise, we conclude that there is no proxy.

Main finite state machine: The main state machine for the aforementioned test 
case is represented in Fig. 9. Again, it is simple to understand as all the 
low-level primitives are hidden inside the nested state machines. It also 
shows how we can take advantage of the nesting feature to use nest-
ed state machines from other use cases. For instance, this test case uses 
three states already defined and presented in subsection 4.1.

 
In addition to these states, we present four new states dedicated to infer-
ring the presence and category of a transparent web proxy:

VARIABLES_SET_UP: builds the SYN packet and provides the name of the 
data channel queue on which the packets will be stored.

SYN_HANDLER: W
1
 sends the SYN packet, both W

1
 and W

2
 wait for a packet on 

their data channel queue.

REMOTE_RECEIVED_GETTER: sends to the other worker whether it received 
the expected TCP packet and the initial SYN sequence number.

RESULT_SETTER: gives a conclusion based on the packets received and the 
SYN sequence numbers.

As we already described three of the state machines in subsection 4.1, 
and since they are the same in this use case, we only present the new 
states in more detail.

3  To simplify, we take for granted that the estab-
lishment of an HTTP connection between W

1
 and W

2
 

(through a transparent proxy) would have been 
successful.

Figure 7. Representation of the behaviour of the connection with and without 
the three different TCP proxies.
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MAIN: The logic of this state machine is similar to the main state machine in the 
DNS redirection use case. We sequentially go from one state to another. 
The complexity is hidden in the nested state machines that we execute 
using the CALL primitive.
The previous use case was totally symmetric, since the two nodes were send-
ing the same request R to a DNS server. Here, the symmetry is broken as the 
two nodes act either as the client or the server. Nevertheless, we try to re-
duce the asymmetry of this test to only one variable, referred to as the role.
The role does not appear on the main state machine, so as to maintain 
a clean symmetry at the highest level. The nested state machines can 
retrieve the role that the master assigned with the help of the GET_FILE_
PARAMETER primitive. This primitive can parse and retrieve the value of 
a specific variable from a configuration file transmitted by the master to 
launch a test campaign. 

VARIABLES_SET_UP: This state is similar to the one with the same name in sub-
section 4.1. If the state machine has the role of the client, it creates a TCP 
SYN packet with the destination IP set as the server’s IP address. The 
destination port is set to 80 for the HTTP protocol. The source port and 
the sequence number are random.
Independently of the role of the state machine, we define the name of the 
data channel queue to indicate at which place the received packets are 
stored. We also assign a filter to this queue so that it only listens for the 
TCP replies based on the source port. When this operation is done, the 
state machine starts to listen for incoming packets and stores the ones 
that are not filtered out. It forwards the name of the queue to the next 
state machine so that it can use it to process received packets. 

Figure 8. Representation of the four possible scenarios, depending on the  
presence and category of a TCP proxy between w

1
 and W

2
.
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SYN_HANDLER: This state sends a SYN packet from W
1
 to W

2
 and processes the first 

packet recorded using the name of the queue given as input parameter.
If the node that executes the program is the client, it sends the SYN  
packet to the remote worker with the SEND primitive and stores its se-
quence number into a sequence variable. This operation is only necessary 
for the client as the server does not need to send any packet.
Both the client and the server then start to process the packets received 
on the data channel queue. The program triggers a PACKET_AVAILABLE 
event as soon as a packet is available in the queue. They declare a new 
variable received and store a 1 into it to indicate that they received a reply. 
Since we want to compare the initial sequence number of the TCP ses-
sion for both nodes, we also extract and store the sequence number of 
the SYN packet into the sequence variable for the server.
Conversely, if the node does not receive any packet, a TIMEOUT event is 
raised and we store a 0 into the received variable to indicate that the lo-
cal state machine did not receive any reply. If it is the case of the server, 
the sequence variable holds the value NULL.
The nested state machine returns the received and sequence variables 
to the main state machine that then forwards them to the next state.

REMOTE_RECEIVED_GETTER: This state is responsible for the exchange of data 
between the two worker nodes.
It calls a nested state machine that sends one sync message to first syn-
chronise with the remote worker. Inside this message, it stores the re-
ceived and sequence local variables. The state machine then waits for the 
remote variables contained within a sync message in the control channel 
queue, using the WAIT_SYNC_SIGNAL primitive.
As soon as a sync message is available on the queue, the state machine trig-
gers a SYNC_AVAILABLE event to resume program execution. The nested state 
machine extracts the variables stored in the sync message and returns them 
to the main state machine. As a result the program now knows everything 
about what happened locally and remotely when the client sent a SYN packet. 

RESULT_SETTER: The final step of the pipeline before disconnecting the control 
channel. The two machines use the local and remote values, along with their 
respective role in the scenario to infer the presence of a proxy and its category.
The nested state machine called for this task only relies on the guard 
mechanism within the transitions to provide the final result. If the serv-
er node set its local received variable as 0, then the state machine  
concludes that there is a sequential proxy. Otherwise, it checks if the cli-
ent node set its local received variable as 1. In that case, the program in-
fers that an asynchronous proxy is between the two nodes. Finally, if the 
local and remote received variables are different, we have a synchronous 
proxy; when they are equal the program says that no proxy is detected.

This represents the final result that we can combine with other test cases 
afterwards to create a more fine-grained test campaign.

Squid: In order to show how we can apply such a use case, we use our solution to 
find to which category a Squid transparent proxy belongs to. Fig. 10 represents 
the architecture for this concrete example. W

1
 takes the role of the client that wants 

to categorize S, the Squid transparent proxy that acts as a man-in-the-middle be-
tween W

1
 and the Internet. W

2
, on the other hand, takes the role of the server. M is 

the master node that assigns the test case presented across this use case and P 
is the proxy used to initialise the control channel between W

1
 and W

2
. The firewall  

redirects TCP packets on port 80 to W
2
 and blocks all other incoming traffic.  

The test case for this example determines that a sequential proxy is pres-
ent. To verify that this result is correct, we use Wireshark to analyse the  
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packets sent between the two TCP connections. The observations validate 
the conclusion given by our solution. Indeed, we do not observe any pack-
et between S and W

2
. On the other hand, we can observe many SYN-ACK  

retransmissions that go to W
1
 with the IP address of W

2
, but which are in fact gen-

erated by S rather than W
2
. This phenomenon is due to the fact that W

1
 does not 

acknowledge these SYN-ACK packets.
This example illustrates how we could use the state machine to classify 
a Squid transparent web proxy. We are in the process of reproducing this 
experiment on many different proxies with a test campaign specifically im-
plemented for this purpose. For the sake of brevity, we defer the presenta-
tion of the results for some further workfuture study.

By means of these two use cases, we have demonstrated how we addressed 
the following specifications, as presented in subsection 3.2: 

1. Ease of use
2. Ease of deployment
3. Modularity
4. Scalability
5. Flexibility

In these test cases, we have ensured ease of use, since an end user does not 
require any knowledge concerning how DNS and TCP packets work. The user only had to con-
tact the master node M with the name of the test they wished to perform. The architectures 
we presented are easy to deploy and distribute, as we only need the master node to add and 
remove nodes (proxies or workers) and be aware of their status. For instance, we described 
how these use cases work with two worker nodes and a proxy P. They did not need any in-
teraction with M after being assigned the test to run. The use cases highlight how our solu-
tion is modular and scalable. We only need the primitives present within our implementation 
to run a large variety of tests. Furthermore, we leveraged nested state machines to reuse 
two entire state machines. Finally, we showed how we ensure flexibility as – in the case of 
the TCP proxy scenario – the data channel is between the two worker nodes. This is not the 
case when we want to verify whether a semi-active component redirects our DNS requests.

5. Conclusion and future research
In this work, we have presented the foundation of a collaborative plat-

form whose focus is to perform discovery and conformance verification of semi-active 
elements in network communications. In the future, we wish to make this platform 

Figure 10. Architecture involving a Squid transparent TCP proxy.
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open to anyone, available all over the world and with a large range of protocols sup-
ported. For this purpose, we are currently in the process of creating new scenarios, 
including (but not limited to) WAF discovery, firewall conformance verification, man-in-
the-middle attack detection, fuzzing or HTTP smuggling execution, etc. Thus, we hope 
to have aroused the interest of the readers and welcome the contributions of anyone 
willing to lend us a hand. We particularly seek for collaborations in the development 
of the new modules that would make our framework more powerful, and also in the 
deployment of our platform around the world. The end goal we have in mind is to pro-
vide a worldwide map of the semi-active elements that may interfere with our daily 
communications.
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