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ABSTRACT
Cantor’s paradise from the perspective of non ‑revisionist Wittgensteinianism: Ludwig 
Wittgenstein is known for his criticism of transfinite set theory. He forwards the claim that we 
tend to conceptualise infinity as an object due to the systematic confusion of extension with in‑
tension. There can be no mathematical symbol that directly refers to infinity: a rule is the only 
form by which the latter can appear in our symbolic operations. In consequence, Wittgenstein 
rejects such ideas as infinite cardinals, the Cantorian understanding of non ‑denumerability, 
and the view of real numbers as a continuous sequence of points on a number line. Moreover, 
as he understands mathematics to be an anthropological phenomenon, he rejects set theory 
due to its lack of application. As I argue here, it is possible to defend Georg Cantor’s theory 
by taking a standpoint I call quietistic conventionalism. The standpoint broadly resembles 
Wittgenstein’s formalist middle period and allows us to view transfinite set theory as a result of 
a series of definitions established by arbitrary decisions that have no ontological consequences. 
I point to the fact that we are inclined to accept such definitions because of certain psycho‑
logical mechanisms such as the hypothetical Basic Metaphor of Infinity proposed by George 
Lakoff and Rafael E. Núñez. Regarding Wittgenstein’s criterion of applicability, I argue that it 
presupposes a static view of science. Therefore, we should not rely on it because we are unable 
to foresee what will turn out to be useful in the future.
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Ludwig Wittgenstein’s reply to the well ‑known remark by David Hilbert about 
Georg Cantor’s transfinite paradise suggests that mathematicians fall victim to 
an illusion: they should rather perceive the alleged paradise as hell in disguise. 
Wittgenstein comments:

I would say, “I wouldn’t dream of trying to drive anyone from this paradise.” I would 
do something quite different: I would try to show you that it is not a paradise — so 
that you’ll leave of your own accord. I would say, “You’re welcome to this: just look 
about you” (LFM: 103).

In this paper, I postulate that Cantor’s set theory is neither a paradise nor 
a hell of mathematics, but rather “plain” ground, just as imaginary num‑
bers or non ‑Euclidean geometry. A Wittgensteinian (non ‑revisionist) cri‑
tique should aim to make the fact that one can perform symbolic operations 
on transfinites and perhaps even utilise them as a novel technique for ap‑
proaching certain mathematical problems, avoiding entanglement in confus‑
ing metaphysical standpoints, and versions of Platonist realism in particular, 
explicit.

Such an approach to the problem calls for a correction of the prevalent 
but misleading realist interpretation of set theory while simultaneously reject‑
ing many of Wittgenstein’s revisionist remarks on Cantor, real numbers, and 
transfinites. Wittgenstein does indeed present a certain intriguing conception 
of mathematics, though he is apparently unaware of breaching the border be‑
tween mere clarification and mathematical theorising, assuming we can speak 
of such a strict demarcation.

It is noticeable that a similar neutral stance was adopted for practical reasons 
by leading scholars of the Lvov ‑Warsaw School of philosophy and the Warsaw 
School of mathematics in the 1920s and 1930s (Woleński, 1985: 179–185). 
They were willing to examine different axiomatic systems regardless of their 
own attitudes towards various philosophical insights those systems carried, 
since they were understood to be personal opinions. This disposition is il‑
lustrated by the following quotation on the axiom of choice from Wacław 
Sierpiński’s Cardinal and ordinal numbers:

Still, apart from our being personally inclined to accept the axiom of choice, we must 
take into consideration, in any case, its role in the Set Theory and in the Calculus. 
On the other hand, since the axiom of choice has been questioned by some math‑
ematicians, it is important to know which theorems are proved with its aid and to 
realize the exact point at which the proof has been based on the axiom of choice 
[…]. And after all, even if no one questioned the axiom of choice, it would not be 
without interest to investigate which proofs are based on it and which theorems 
can be proved without its aid — this, as we know, is also done with regard to other 
axioms (Sierpiński, 1958: 90).
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This paper is divided into four sections, the first of which gives an out‑
line of transfinite mathematics and its history. It is followed by an attempt 
at a reconstruction of Wittgenstein’s criticism of the notion of transfinites in 
mathematics in §2. Next, in §3 I lay down a non ‑realist reading of transfinite 
mathematics, which I consider to be non ‑revisionist Wittgensteinism. To this 
end I utilise, though not uncritically, George Lakoff and Rafael E. Núñez’s idea 
of the Basic Metaphor of Infinity. Finally, in §4 I analyse Wittgenstein’s stance, 
focusing mainly on the applicability of various mathematical techniques.

§1

The problem of infinity in mathematics is certainly much older than Cantor’s 
set theory. It is impossible to determine the specific moment when Homo sa‑
piens recognised that the series of natural numbers continues indefinitely. The 
ancient Greeks were no doubt aware of this, as they possessed the concept of 
infinity (in §3 I will present a possible causal explanation for its emergence). 
When Aristotle famously differentiated between two general ways of under‑
standing this concept, he was motivated to do so by concern for the problems it 
might create, an approach which he shared with many of his predecessors, in‑
cluding Plato, the Eleatic school, and Pythagoras. In search for the sole intelli‑
gible construal of infinity, the Philosopher decided to reject the understanding 
of infinity as “actual”, that is, somehow achievable and graspable magnitude, in 
favour of what is called “potential infinity”, that is, the notion of a perpetual 
process, extending towards the horizon of our comprehension.

Despite Aristotle’s objections, the concept of actual infinity was success‑
fully employed by Archimedes in his famous proof that the ratio of the area 
of a given sphere to the total area of a cylinder enclosing it is precisely 2/3. It 
could be argued that if Archimedes were to share Stagirite’s doubts, he would 
be unable to determine that the ratio is a rational number, since in the course 
of an infinite process that number would never be reached.

In early modernity, a new type of mathematical infinity was introduced: 
the infinitesimals postulated by differential and integral calculus. The defini‑
tion of infinitesimals given by Leibniz clearly referred to the understanding of 
infinity as actual. By that time the concept had been rehabilitated, initially by 
theologians — who had construed it as the fullness of being and an aspect of 
divinity — and subsequently in epistemology and mathematics by Nicholas of 
Cusa, René Descartes, Blaise Pascal, and others. On the other hand, the British 
Empiricists Berkeley and Hume took a strictly finitist approach.

However, infinity in calculus could also be understood as a convenient rep‑
resentation of an infinite process, therefore as a potential infinity. This be‑
came evident in the nineteenth century when Augustin ‑Louis Cauchy and 
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Karl Weierstrass provided more rigorous foundations for analysis. Defining the 
limit of a sequence and uniform convergence allowed them to rid calculus of 
troublesome actual infinities.

In the latter half of the nineteenth century, another breakthrough in math‑
ematics occurred, this time supporting the concept of actual infinity. The study 
of real numbers and the functions defined on them led Weierstrass to propose 
his peculiar continuous non ‑differentiable function while Richard Dedekind 
produced a method of constructing non ‑rational real numbers. Yet most cru‑
cially Cantor, departing from Bolzano’s definition of a set, developed a theory 
allowing for the description of the infinite series of different orders of infinity.

Cantor’s article from 1874 — the first instance of the formulation of the 
notion of transfinite numbers — introduced the concept of denumerable in‑
finity by means of a bijective function placing the elements of a given set in 
a one ‑to ‑one correspondence with the elements of the set of all natural num‑
bers N. One ‑to ‑one correspondence was utilised by him as a decisive argument 
in favour of the denumerability of the set of real algebraic numbers; that is, all 
roots of non ‑zero polynomials in one variable with rational coefficients. Sub‑
sequently, Cantor presented a proof that any given interval of real numbers [a, 
b] contains infinitely many transcendental numbers; that is, non ‑algebraic real 
numbers.1 On this he based the claim that no set of real numbers belonging to 
an interval of real numbers can have one ‑to ‑one correspondence with N, and 
thus the set of real numbers R, the so ‑called continuum, is non ‑denumerable, 
unlike the set of all real algebraic numbers. He concluded that the continuum 
must be a magnitude greater than the infinity describing the set of all natural 
numbers.

In his 1878 paper, Cantor introduced the concept of a set’s cardinality: any 
two sets are of the same cardinality when there is a one ‑to ‑one correspondence 
between them. He also noted that any countably infinite product of copies of 
R has the same cardinality as R itself. In other words, there is a one ‑to ‑one 
correspondence between the points on any given line segment and the points 
in an n ‑dimensional space for any positive integer n. This article was also where 
the famous Continuum Hypothesis (CH) was put forward: Cantor conjectured 
that there is no set whose cardinality is exactly between that of integers and 
real numbers.2

1 The proof postulates the construction of a hierarchy of ever smaller nested intervals to 
demonstrate that as this hierarchy approaches infinity it produces a transcendental number. 
There is no agreement among mathematicians whether this proof is really constructive. Among 
those opting for its constructivity were Abraham Fraenkel (Fraenkel, 1930) and Barnaby Shep‑
pard (Sheppard, 2014); meanwhile, those who opposed were Ian Stewart (Stewart, 2015) and 
Lech Gruszecki (Gruszecki, 2005: 168), among others.

2 In this outline (save for this footnote), I consciously neglect to treat upon the problem 
of the well ‑ordering of transfinite sets. The CH requires the assumption that all transfinite 
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Cantor’s most important contributions were contained in his 1891 paper, 
containing both a formulation and a proof of Cantor’s theorem and his famous 
diagonal argument. The former states that the power set of any given set A (the 
set of all subsets of A) necessarily has a greater cardinality than A. Most im‑
portantly, this also holds true for infinite sets. For example, assuming that the 
cardinality of N is ℵ0, the cardinality of its power set is equal to 2ℵ0, but is also 
strictly greater than ℵ0. This means that the power set of N is uncountable. 
The cardinality of the continuum (R) is the cardinality of 2ℵ0, which is written 
with the symbol 𝔠. Also, since the power of R is equal to the power of Rn for 
any integer n, then 𝔠 = 𝔠n for any integer n. Since, according to the CH, 𝔠 is the 
next cardinal number after ℵ0, 𝔠 = ℵ1. 𝔠 is, of course, not the greatest cardinal 
number, for it follows from Cantor’s theorem that the power set of R has a car‑
dinality strictly greater than 𝔠 (namely, ℵ2, the third transfinite cardinal; again, 
assuming the truth of the CH). The power set of that power set must have 
an even greater cardinality, and so on. This introduces an infinite hierarchy of 
transfinite cardinals corresponding to the infinite hierarchy of power sets.

Similar to the argument for the existence of infinitely many transcenden‑
tal numbers, the diagonal argument takes upon itself to prove that the set of 
real numbers cannot be put into a one ‑to ‑one correspondence with the set 
of natural numbers, and that in consequence the cardinality of the former is 
strictly greater than the cardinality of the latter. The original formulation of 
the argument from Cantor’s 1891 paper describes the set of all infinite binary 
sequences, referred to as T. The set T cannot be denumerated, for there will 
always be a sequence within it not included in any denumeration: we can always 
construct such a sequence by selecting the n ‑th digit from each n ‑th sequence 
in T and inverting it (changing 0 to 1 and vice versa). The resulting sequence 
differs from any sequence belonging to T by at least one digit. (Were one to 
write the sequences as rows of a table, each column containing specific digits 
from all sequences, the digits to be inverted would form a diagonal line across 
the table; hence, the name of the argument.) This allowed Cantor to easily 
prove the uncountability of the set T by contradiction. Furthermore, since 
we may assume that all real numbers can be represented with infinite binary 
sequences divided in some place with a radix point, there is a one ‑to ‑one cor‑
respondence between T and R, meaning that R is uncountable.

In the early twentieth century, the original rendition of set theory — later 
named naïve set theory — had been proven to yield antinomies. Several at‑
tempts had been made to remedy this, one of them being the axiomatisa‑
tion proposed by Ernst Zermelo and Abraham Fraenkel, today considered to 
be the standard version of the theory. Strictly speaking, there are two forms 

sets are well ‑ordered. Cantor attempted to prove this by introducing infinite ordinals; he was, 
however, only able to prove that countably transfinite sets were well ‑ordered.
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of axiomatic set theory: the narrower (ZF) containing eight axioms, and the 
wider (ZFC) including also the axiom of choice (AC). This additional axiom 
attracted some controversy as it assumes the existence of non ‑construable ob‑
jects and yields counter ‑intuitive results, including the Banach ‑Tarski para‑
dox.3 Apart from AC, another intriguing element of ZF and ZFC is the axiom 
of infinity, warranting the existence of at least one infinite set of cardinality 
equal to the cardinality of N.

The reception of Cantor’s achievements by his contemporaries was mixed, 
and it remains so today. During his lifetime, he had a powerful opponent 
in Leopold Kronecker, a proponent of Aristotelian finitism. On the other 
hand, transfinite methods were acclaimed by distinguished mathematicians of 
the time: Weierstrass and Dedekind. Mathematics at the beginning of the 
twentieth century was dominated by the debate regarding the validity of non‑
‑constructive proof in the transfinite domain. Today, most mathematicians 
accept Cantor’s accomplishments, along with some version of the Platonist 
ontology of mathematics, although constructivism and finitism in their many 
denominations are not without adherents. The anecdotal evidence that I have 
gathered suggests that transfinitism is more likely to be rejected by scholars of 
applied mathematics who tend to disregard it as fantasy or theology, a pejora‑
tive term in this context.

One should also note that CH is not the only element of Cantor’s set theory, 
which must be settled by means of a mathematician’s decision. The relation of 
equinumerosity, established by means of one ‑to ‑one correspondence between 
various denumerable infinite sets, does not hold within the Alpha ‑Theory, an 
alternative approach to non ‑standard analysis, which upholds Euclid’s principle 
that the whole is larger than its parts, also in the domain of infinites. By means 
of Alpha ‑Theory we can demonstrate that there is no equinumerosity between 
the set of natural numbers N and its infinite proper subsets like the set of even 
numbers or the set of primary numbers: their cardinality is lesser than the car‑
dinality of N; likewise, we can show that the cardinality of the set of rational 
numbers is greater than the cardinality of N (Benci & Di Nasso, 2014). Thus, 
we may choose between very disparate transfinite calculi.

§2

Although the evolution of Wittgenstein’s thought was a continuous and com‑
plicated process, having different dynamics of development in its various planes, 

3 The so ‑called paradox is a theorem provable in ZFC, according to which it is possible to 
disassemble a given 3 ‑dimensional sphere into a finite number of disjoint subsets and reassem‑
ble them into two spheres, identical to the original in size (Banach & Tarski, 1924). The major‑
ity of contemporary mathematicians no longer consider it to be a paradox (Stromberg, 1979).
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and although the popular belief that there had been the “early” and “late” 
Wittgenstein is rather an artefact of his interpreters than a reflection of reality,4 
in some particular fields such a periodisation may prove useful, with certain 
reservations considered. Regarding his philosophy of mathematics, three (and 
a half ) distinctive stages of development are discernible. The first, the Tractar‑
ian stage, shall not be dealt with here. Wittgenstein’s post ‑Tractarian philoso‑
phy can be divided into two general periods, and so can his consideration of 
mathematical problems.

During the first period, he was an advocate of understanding mathematics as 
a system of very strictly understood calculi, the identity of which boil down to 
the set of their rules. (At the onset of this stage, he developed a peculiar verifi‑
cationist approach to mathematics; this stands for the abovementioned “half ”). 
During the second period, Wittgenstein focused his attention on the form of 
life and on practice, that is: the role operations on mathematical symbols play 
in extra ‑mathematical activities and language games. While interpreters vary 
in their identification of the moment of Wittgenstein’s transition from the 
calculus period to the language ‑game period, it can be assumed that this oc‑
curred around 1935. In any case, the transformation was by no means radical. 
One may point to the common trait of the two periods: the rejection of the 
objectivist vision of mathematical reality held by Bertrand Russell and Godfrey 
H. Hardy, according to which mathematics was to transcend the symbolical 
capabilities of human beings (Floyd, 2005: 112; Gerrard, 1991: 127–131).

The Calculus Conception

One may say, following Steve Gerrard, that the calculus period is founded 
upon a radical understanding of the autonomy of syntax principle, according to 
which the evaluation or justification of rules is pointless, since it is not possi‑
ble to compare different calculi or even to say anything about them in general. 
Even the slightest change in the set of the rules results in the establishment 
of another calculus; syntax is self ‑sufficient, as it does not need to be rooted 
in any reality, including that of human activity, and any attempt to provide 
a grounding for it or to prove its consistency, like that undertaken by advocates 
of set theory, makes no sense (WVC: 119–121). Within such a framework, 
consistency itself becomes quite a trivial property: in the early 1930s, Witt‑
genstein had an extremely liberal approach to the problem of contradiction. 
He even suggested that too much effort is made to erase it from calculus. 
(Such a lax attitude may be regarded as a flaw.) Among the undoubtable weak‑
nesses of Wittgenstein’s thought during the calculus period were the inability 

4 I deal with this issue in my paper The other Wittgenstein (Gomułka, 2019).
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to formulate any theoretical account of the changes and development of calculi 
and a lack of clarity concerning the problem of rules5 (Gerrard, 1991: 133–136; 
Gomułka, 2019).

The information that we have regarding the first year of Wittgenstein’s 
work after his return to philosophy in March 1928 is fragmentary and insuffi‑
cient. However, the problem of infinity was undoubtedly among the first topics 
with which he engaged. Initially, as he collaborated with Frank Ramsey, he in‑
tended to supplement the conception of the Tractatus with the understanding 
of infinity that they both considered appropriate.6 Together, they came to the 
conclusion that the requirements for a construction which is to be responsible 
for the popular notion of infinity are contradictory, for such a thing must be 
both complete and without an end.

In his Philosophical remarks, Wittgenstein forwards the claim that we tend to 
conceptualise the existence of actual infinity due to the systematic confusion of 
the two distinct meanings of the word “possibility”: the modal and the gram‑
matical one. The former relates to the word “real”; hence in the modal sense, 
everything which is possible could be real. The latter meaning, deeply related 
within the concept of infinity, is not an attribute of objects or situations being 
described, but a feature of the operation of the syntax of calculus (PR: §141).

These two different meanings of the word “possibility” are related to the 
two different ways of proving formulas: regular and by induction. At the 
very beginning of his calculus period, Wittgenstein abandoned the belief ex‑
pressed in the Tractatus that mathematical expressions (equations) are sense‑
less pseudo ‑propositions (TLP: 6.2). He did so by means of the verification 
principle applied to formal sciences: if a proof is the method of establishing 
the truth ‑value of a mathematical theorem, then this proof should be under‑
stood to be the sense of that theorem, meaning that the theorem should be 

5 The problem of rules was crucial for the calculus period. While Wittgenstein’s conception 
still demanded absolutely strict and unambiguous rules, there were no grounds for meeting 
these requirements. After Wittgenstein discovered the limitations of logic, understood in the 
Tractatus as the transcendental base responsible for the functioning of the machinery of any 
meaningful symbolism, he at first tried to pursue a peculiar form of phenomenological theory 
which assumed the so ‑called primäre Sprache; that is, a level of language directly mirroring 
the structure of phenomena. However, that theory was short ‑lived due to its inner contradic‑
tions and was abandoned by him in October 1929 (Monk, 2014). Wittgenstein’s later attempts 
would sometimes even approach Cartesian mentalism (WLC2: 36f.), which demonstrates his 
helplessness in the face of the problem.

6 It is not clear how exactly Wittgenstein became aware of the necessity of such a correc‑
tion. Ramsey’s account from June 1929 suggests that he rejected his previous formulation as 
a result of considering general propositions (Moore, 1993: 48). Some authors suggest that 
Wittgenstein changed his stance in response to Brouwer’s lecture (Wrigley, 1989; Holton 
& Price, 2003); a number of others believe that Wittgenstein’s finitism was a result of Ram‑
sey’s influence (Sahlin, 1997; Marion, 1998: 84–109; Methven, 2015: 198–230).



Cantor’s paradise from the perspective… 359

recognised as a fully ‑developed proposition.7 The Viennese philosopher went 
as far as to say that the symbol of a mathematical theorem is an abbreviation 
of its full proof; he did not, however, extend this to theorems proven by induc‑
tion which he called “recursive”, since he did not consider them to be propo‑
sitions, because, as he claimed, induction as such neither asserts nor negates 
anything (WVC: 82). A proof by induction should be taken as a certain tem‑
plate, a “signpost” indicating how the proof of a specific proposition is to be 
constructed (MS ‑105: 87).8 Expressions within theorems proven by induction 
or even the recursive proofs themselves do not represent infinity, but rather 
simply point towards the infinite possibility enabled by grammar (WLC2: 14; 
MS ‑111: 46f.). In consequence, neither the fundamental theorem of algebra 
(MS ‑105: 101), nor Fermat’s Last Theorem (MS ‑107: 83)9 can be considered 
valid mathematical propositions.

Wittgenstein’s grammatical finitism, according to which infinity is “sewn” 
into the syntax with no symbol being able to refer to it directly, entails a rejec‑
tion of Cantor’s reading of the diagonal argument and the very idea of continu‑
um, but also results in a peculiar conception of real numbers. Infinity is neither 
a number nor a magnitude (MS ‑106: 197), though that does not result from 
our cognitive limitations, but rather from the fact that the methods and criteria 
by which we determine finite magnitudes cannot be meaningfully employed to 
infinity (WVC: 187n). For Wittgenstein, infinity is never an object, but always 
given by induction; that is, by a rule.10 He calls the idea of an infinite totality 
“utter nonsense”; since such an idea cannot be presented within any valid sym‑
bolism, Cantor and others had to postulate a fictitious one (PR: §§145, 174). 
Wittgenstein argues that no valid symbolical structure is able to demonstrate 
that the function f(m) = 2n from natural numbers to even numbers establishes 
a one ‑to ‑one correspondence between a set and its proper subset; it is just 

7 While developing his views on calculus, Wittgenstein was inspired by Carl Johannes 
Thomae’s formalism and modified his views accordingly: since the process of proving deals 
with symbols within a certain calculus which is determined by a certain rule set, the meaning 
of those symbols is fully determined by the rules (WVC: 103–105).

8 Marion points out that this idea was inspired by Thoralf Skolem’s primitive recursive 
arithmetic (Marion, 1998: 98).

9 Wittgenstein’s comments on Fermat’s Last Theorem in his 1933 Big typescript suggest 
that he thought that theorem is somewhat external to the calculus (BT: 420).

10 According to Marion, by claiming that the difference between the finite and the infinite 
is grammatical in nature, Wittgenstein takes a position which cannot be validly described as 
“finitist”. Marion prefers the term “intensionalism” as opposed to “extensionalism” to which 
all well ‑known standpoints (logicism, formalism, finitism, intuitionism, etc.) are subsumed 
(Marion, 1998: 186–189). It is also noticeable that Wittgenstein’s “intensionalism” is built 
upon the anti ‑logicist idea that we cannot talk of a class that has not been already effectively 
determined by a function, a series of forms, or simply the enumeration of its elements, present 
in the Tractatus (TLP: 5.501).
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a sign for an infinite process (PR: §141), meaning that one is not in the posi‑
tion to talk about equinumerability in such cases.

According to Wittgenstein, we cannot determine whether real numbers are 
non ‑denumerable, since any real number de facto occurring in any of our calculi 
is determined by a certain law, and it is this law and not the number’s exten‑
sion (decimal or other) that determines the identity of a given real number. 
Examples of such laws include the ratio of a square’s diagonal to its edge, the 
ratio of the area of a circle to the area of a square with an edge equal in length 
to the radius of that circle, etc. (PR: §§181, 186; WVC: 71, 81f.; PG: 484f.). 
To be able to determine that a number is non ‑rational, we have to lay down an 
adequate law. Thus, there is no repository with the magnitude of continuum. 
Dedekind’s cut is simply an illusion: the supposed transcendental number can 
never be reached (MS ‑106: 78; PR: §181; BT: 496). It is precisely for this 
reason that Cantor’s diagonal argument cannot prove the existence of non‑
‑countable real numbers: it is nothing but an algorithm returning a number 
different from all the numbers known to us up to this point. Since we may only 
provide a finite amount of numbers, and this limitation is not factual (epis‑
temic) but grammatical in nature, by applying the diagonal method we simply 
obtain more numbers that we can add to our new, still finite, list.

By equating real numbers with laws, Wittgenstein burned the main bridge 
leading to actual infinite structures. Consequently, he was forced to reject 
certain received assumptions, such as the continuity of a function. This was, 
however, a price he was willing to pay, for above all he was opposed to what 
he considered to be a confusion of extensions, represented by lists, with inten‑
sions represented by laws.11 Wittgenstein believed that such a perspective was 
deceitful “prose” added to calculus, allowing for alleged discoveries of non‑
‑rational points, which in reality may only be constructed (WVC: 129, 149, 
175). All that is required is a calculus that works and needs only to be provided 
with rules and induction. Thanks to the latter, we know that we can execute 
certain operations indefinitely, but induction can only provide us with as much 
as it does and nothing more. When we divide 1/3 on paper, we can always ob‑
tain only a finite decimal expansion. “Everything else that is nonetheless said, 
e.g. that infinitely many threes follow, does not belong to mathematics proper 
but is a private matter” (WVC: 33; cf. BT: 466).12

11 In Philosophical grammar we read: “After all I have already said, it may sound trivial if 
I now say that the mistake in the set ‑theoretical approach consists time and again in treating 
laws and enumerations (lists) as essentially the same kind of thing and arranging them in paral‑
lel series so that one fills in gaps left by another” (PG: 461).

12 The account of the calculus phase of Wittgenstein’s thought that I give may have been 
too simplified and fails to reflect the dynamics of this period. Some prominent interpreters 
argue against the verificationist reading of the middle period of his philosophy of mathematics 
(Floyd, 2000: 244–252).
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The Language ‑Game Conception

While the transition from a paradigm focusing on calculus to one based on 
language ‑game was fluent in Wittgenstein’s thought, several important fea‑
tures differentiating the latter from its predecessor can be identified. First, 
grammar, rules, and meaning become treated much less restrictively. Second, 
much more emphasis is placed on the practice of community activities, par‑
ticularly on their feasibility. From the first two follows a third: the formalist 
autonomy of the syntax principle (in Carl Johannes Thomae’s spirit) is signifi‑
cantly weakened. All three changes result from Wittgenstein’s reflection on the 
workings of grammar and his engagement with the problem of the criteria of 
operation according to a given rule.

The less stringent treatment of grammar resulting from a greater emphasis 
on pragmatics, perhaps counterintuitively, led to a decline of Wittgenstein’s 
laissez ‑faire attitude towards contradiction. As has been pointed out, by Ger‑
rard (Gerrard, 1991: 136–139) among others, Wittgenstein recanted his earlier 
thesis that contradiction is not a problem for calculus, asserting that for us to 
recognise something as belonging to mathematics it must operate as such; that 
is, to be applicable to our everyday activities. Moreover, its application must 
be recognisable as a calculation.13 In general, however, Wittgenstein became 
much more reserved with his resolute assertions regarding the nonsensical‑
ity of certain utterances. The paradigm which formed in the latter half of the 
1930s beckoned him to search for the proper sense of expressions which several 
years before he would have simply considered nonsensical. A certain change of 
tone in his opinions on set theory is also noticeable. While expressions of sheer 
condemnation are easy to find in texts written during the calculus period,14 
compilations representing his later views, such as Remarks on the foundations 
of mathematics or Lectures on the foundations of mathematics (and their cor‑
responding manuscripts) often express the spirit of PI §124, declaring that 
philosophy should not interfere with what Wittgenstein considers to be actual 
mathematics, but rather remain descriptive and leave it as it is (RFM: II, §62).

13 See also Wittgenstein’s well ‑known example of wood sellers (RFM: I, §149), discussed 
by David Cerbone (Cerbone, 2000).

14 For example: “Set theory is wrong because it apparently presupposes a symbolism which 
doesn’t exist instead of one that does exist (is alone possible). It builds on a fictitious sym‑
bolism, therefore on nonsense” (PR §174). Also: “A class cannot be finite or infinite. The 
words ‘finite’ and ‘infinite’ do not signify a supplementary determination regarding ‘class’” 
(WVC: 102). The latter stance, expressed at the meeting of the Vienna Circle on June 19, 
1930, was later replaced by the view that the concepts of infinite and finite classes do indeed 
have meanings, only their syntax differs substantially (WVC: 227f.; MS ‑113: 88r, repeated in: 
TS ‑211: 652; TS ‑213: 744r; PG: 464f.; and BT: 492). This appears to be one of the signs of 
Wittgenstein’s shifting his initial verificationist stance towards the fully developed calculus 
view inspired by the Frege ‑Thomae dispute.
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However, Wittgenstein did not withdraw any of his principal objections 
to transfinite set theory; on the contrary, they were reinforced by yet another 
crucial argument. First, as has been noted by Victor Rodych, Wittgenstein’s 
stance regarding the intensional character of infinity had “not changed one 
iota” (Rodych, 2000: 289), and for that reason he still rejected the extensional 
reading of the concept. As a consequence, he retained the same negative at‑
titude towards such ideas as infinite cardinals, the Cantorian understanding of 
non ‑denumerability, and the view of real numbers as a continuous sequence of 
points on a number line (RFM: II, §§32f.).

Second, Wittgenstein continued to deny the very need for a single founda‑
tional theory for the entirety of mathematics, which set theory was an attempt 
at doing.15 He considered mathematics to be the sum of the various techniques 
developed during its history and did not recognise the need to subsume that 
colourful variety under this or that axiomatisation. Thus, while Quine and 
others tended to consider set theory as a useful foundation for mathematics 
itself (Rodych, 2000: 310), the Viennese philosopher rejected the very need to 
which they were responding (RFM: III, §§45f.).

Third, what Wittgenstein identifies as questionable in the works by Can‑
tor and his followers is not the calculus itself, but the “prose” attached to it; 
that is, the allegedly illegitimate interpretation according to which calculus 
could be used to obtain a hierarchy of actual infinities. Likewise, Wittgen‑
stein retained the belief that it is merely unjustified “prose” to claim that the 
diagonal argument is proof that the cardinality of the set of real numbers is 
strictly greater than the cardinality of the set of natural numbers; that we 
may speak of the continuum as a set and compare it with its proper subsets; 
and so on. Wittgenstein puts a lot of effort into distinguishing between what 
he considers to be prose and proper calculi, although he strips set theory of 
all its charm by doing so, for it was designed precisely to enable theorising 
about transfinite magnitudes (and this is also the reason why we remain cap‑
tivated by it). Nonetheless, set theory presented without what Wittgenstein 
understands to be ambiguities amounts to a modest and uninteresting set of 
techniques.16

Another of Wittgenstein’s objections to set theory, which originated only 
during his language ‑game phase, is based on the understanding of mathemat‑
ics as an anthropological phenomenon, a human activity governed not only by 
the rules of grammar, but also directed by the practical goals at which it aims 

15 The roots of that resistance can be traced back to the pre ‑Tractarian stage of his thought 
(Floyd, 2000: 233f.).

16 Ryan Dawson (Dawson, 2016) took upon himself the task of reconstructing what would 
have become of set theory were it to look for Wittgenstein’s approval during its development 
(not dealing with the problem of extra ‑mathematical applicability, which will be treated upon 
shortly within the main text of this paper).
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(RFM: VII, §33). As Wittgenstein understands, the only reason for inventing, 
developing, and employing mathematical techniques is to rely on them over 
the course of our lives (LFM: 82).17 According to this view, set theory is denied 
a place within mathematics, since it is nothing but a game of signs with no 
application. Even if we graciously permitted set theorists to use symbols alleg‑
edly referring to inconstruable extensions, their works would have no meaning 
outside of the system within which they operate:

“These considerations may lead us to say that 2ℵ0 > ℵ0.”
That is to say: we can make the considerations lead us to that.
Or: we can say this and give this as our reason.
But if we do say it — what are we to do next? In what practice is this proposition 
anchored? It is for the time being a piece of mathematical architecture which hangs in 
the air, and looks as if it were, let us say, an architrave, but not supported by anything 
and supporting nothing (RFM: II, §35).18

For obvious reasons, set theory in its truncated form, stripped of the ap‑
peal of actual infinity, cannot have any external use, either. The only certain 
application that set theory may claim to have is its role as the foundation of 
mathematics, which Wittgenstein decisively rejected at all stages of his philo‑
sophical career. The theory is not only uninteresting, says the Viennese phi‑
losopher, but it is also disconnected from our other practices, mathematical or 
not. To use one of Wittgenstein’s famous metaphors, it is like a cog detached 
from the working mechanism, spinning idly and aimlessly.

As will be shown in §4, the above argument against set theory has a certain 
weakness. Meanwhile, in §3 I shall leverage the differences between revision‑
ist and non ‑revisionist traits in Wittgenstein’s post ‑Tractarian philosophy. In 
particular, I shall demonstrate that his intensional interpretation of infinity — 
or, rather, his opposition to the extensional understanding of the concept — is 
strictly revisionist in nature, and so its cogency as an argument against trans‑
finite mathematics is limited.

§3

Can Cantor’s set theory be interpreted and accepted in a form devoid of math‑
ematical Platonism, while not being reduced to its truncated, Wittgensteinian 
version consisting of a collection of rather uninteresting calculi? I will attempt 
to answer this question in the affirmative.

17 As has been noted by Rodych (Rodych, 2000: 303), among others, this belief has roots 
in the Tractatus, 6.211.

18 Similarly, in RFM: II, §12 Wittgenstein puts forward the rhetorical question: “What 
can the concept of ‘non ‑denumerable’ be used for?”.
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The justification of my answer will be twofold. First, let us adopt the per‑
spective I will call quietistic conventionalism. The perspective broadly resem‑
bles Wittgenstein’s formalist middle period developed during his discussions 
with Moritz Schlick and Friedrich Waismann as he became acquainted with 
Gottlob Frege’s critique of Thomae’s older formalism. Such a perspective al‑
lows us to view transfinite set theory as the result of a series of definitions 
established by arbitrary decisions. This is how we have arrived at concepts such 
as the equinumerability of infinite sets, denumerability, non ‑denumerability, 
cardinality of N, cardinality of the power set of the ℵ0 ‑infinite set, continuum, 
etc. Subsequently, in the same manner, we have been led to agree on various 
equations, such as:
ℵn = 2ℵn–1,
𝔠 = ℵ1,
ℵ0

n = ℵ0,
𝔠ℵ0 = 𝔠,
etc.
All of this can be treated as the grammatical rules of a given calculus. We 

can also arbitrarily recognise Dedekind’s constructions, proofs by Cantor and 
others, and so on, regardless of whether they fulfil the condition of constructi‑
bility, no matter how they are understood. It is noticeable that the later Witt‑
genstein does indeed toys with such a laissez ‑faire approach to the set theory 
(RFM: II, §35, quoted in the previous section). The fact that such a calculus 
allows for contradictions is not a grave problem, since the perspective we have 
assumed allows us to deal with the eventual emergence of a contradiction by 
appending some specific rules to the calculus (WVC: 119f.). One could even say 
that the history of set theory de facto conforms to this model of development.

The quietist conventionalist approach invites the following objection: since 
all rules are accepted arbitrarily, on what grounds do we adopt this and not 
another syntax? How is it that mathematicians generally have come to approve 
of the series of arbitrary decisions made by the founders of set theory?

Note that this is a question of natural history, something factual; it is 
therefore empirical and not philosophical in nature. We do not ask about rea‑
sons but causes. This calls for an empirical answer in the form of exposed 
non ‑arbitrary, pre ‑grammatical, and pre ‑normative conditions for grammar 
itself. This will constitute the second stage of the rationale of my answer to the 
possibility of non ‑Platonist transfinitism.

In their 2000 book Where mathematics comes from, Lakoff and Núñez put 
forward a psychological explanation of the formation of the concept of actual 
infinity. To this end, they utilise conceptual metaphorization theory and sev‑
eral other theories proposed within cognitive linguistics. The explanation they 
provide lacks sophistication and has attracted criticism, especially, though not 
exclusively, from mathematicians who are committed Platonists. It also lacks 
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originality: one could describe it as a modern articulation of beliefs present 
within various currents of finitism and intuitionism since at least the 1920s. 
Nonetheless, their explanation has maintained its position in the cognitive sci‑
ences for twenty years without any serious alternative.

The authors of Where mathematics comes from have advanced a hypothesis 
according to which actual infinity is a metaphorical concept in the strict, tech‑
nical sense of the term. “Literally”, they write, “there is no such thing as the 
result of an endless process. If a process has no end, there can be no ‘ultimate 
result.’ But the mechanism of metaphor allows us to conceptualise the ‘result’ 
of an infinite process — in the only way we have for conceptualising the result 
of a process — that is, in terms of a process that does have an end” (Lakoff 
& Núñez, 2000: 158).19 A metaphor in this context signifies a projection link‑
ing two conceptual domains, allowing us to enrich the conceptual structure 
of the target domain with features already present within the source domain 
( Evans, 2007: 136f.). Thus, when Lakoff and Núñez describe the Basic Meta‑
phor of Infinity (henceforth, BMI), they refer to the result of mapping the 
domain of completed (finite) iterative processes onto the domain of infinite it‑
erative processes. While some features of the result are shared by both domains 
(both processes must have a starting point, their initial iteration leads to a first 
state, and there is a general notion of movement from one state to another), the 
crucial feature is the product of the projection: there exists a unique and final 
resultant of an indefinite process, following every non ‑final state. According to 
the mentioned authors, this is how we arrive at the concept of infinity. They 
stipulate that all cases of that concept’s use in mathematics can be explained in 
terms of the BMI (Lakoff & Núñez, 2000: 159–161). Indeed, they devote indi‑
vidual chapters to explaining the role that the BMI plays in our conceptualisa‑
tion of real numbers (Lakoff & Núñez, 2000: 181–207) and how it forms the 
basis of transfinite set theory (Lakoff & Núñez, 2000: 208–222). However, I do 
not wish to dedicate space here for an in depth discussion of their conception; 
I only mention that its details are highly disputable. But from a philosophical 
point of view these details are insignificant and may be even false: what is of 
interest to us is the very existence of an explanation in such a form, since it al‑
lows us to consider the problem of actual infinity from a new angle.

In general, Lakoff and Núñez’s conception — or any similar attempt for 
that matter — boils down to providing a strictly finitist, yet simultaneously 
non ‑disqualifying explanation of the emergence and operation of transfinite 
calculus. Such an account does not postulate the existence of infinite expan‑
sion or transfinite power sets, nor does it refer to any special mathematical 

19 It is worth noting that the authors remark that the category of iterative process along 
with its subcategories of completed and indefinite processes is embodied in the sense that it 
emerges naturally as cognitive account of bodily activities like breathing or walking (Lakoff 
& Núñez, 2000: 155–157).
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intuition: from the psychological perspective presented by the authors of 
Where mathematics comes from, Cantor’s set theory is undoubtedly an invention 
and not a discovery. On the other hand, their account — and, generally, any 
account of this kind — cannot be described as revisionist, since it is very far 
from postulating prohibition of any axioms. It is also compatible with both ZF 
and ZFC systems, although the axiom of infinity, as well as all other axioms 
it treats upon, are not to be understood as postulating existence in the sense 
of ontological commitment, but rather as permission to use certain symbols 
when building mathematical constructions that have a carefully defined func‑
tion within our calculus to signify magnitudes, we are unable to explicitly give.

One caveat must be given here: Lakoff and Núñez understand the term 
“concept” very differently from Wittgenstein. From the perspective of cogni‑
tive linguistics, “conceptual structure” denotes a certain hypothetical cogni‑
tive mechanism: a piece of equipment allowing us to carry out mental opera‑
tions. Let us not be misled by similarities in expression: while Wittgenstein 
also metaphorically compares concepts to tools (PI: §11), elsewhere he refers 
to them as something normative and communal. His concepts are depend‑
ent on grammar, understood as a system of rules functioning on a level above 
the cognitive structures of a single mind. Lakoff and Núñez seem to describe 
only an aspect of what Wittgenstein calls a concept; he would have considered 
what in cognitive linguistics is now called conceptual structures to be factu‑
ally grounded patterns of disposition to particular forms of categorisation. The 
examination of such structures does not lie in the domain of philosophical 
analysis, but in that of empirical sciences. Likewise, the BMI hypothesis is 
decidedly empirical in nature: it can be tested and falsified through empirical 
experiments. Consequently, to use Wittgenstein’s metaphor, Lakoff and Núñez 
continue with their inquiry at a depth where the philosopher’s spade is turned, 
for it has reached bedrock (PI: §217). The BMI itself is a causal explanation 
of the agreement in judgments among mathematicians engaged in set theory 
research (PI: §242).

In order to move away from devices such as the BMI to conceptual struc‑
tures as understood by Wittgenstein, we would need to establish and imple‑
ment some grammar among our peers. The establishment of a grammar is 
always a certain invention. Wittgenstein discusses this in a sense using the 
example of a fairy tale in which the princess, asked by the king to arrive nei‑
ther naked nor dressed, gets the idea to wear fishnet (WLC1: 185f.). Initially, 
we are perplexed, since we lack the procedure to reach the required solution, 
but as we come up with an adequate process, it appears to be obviously correct 
and becomes universally accepted.20 Dedekind and Cantor, as well as Zermelo 

20 The invention of a new calculus is a constantly recurring topic in Wittgenstein’s math‑
ematical considerations (Floyd, 2000: 244–252).
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and Fraenkl, had originated such grammatical inventions, though they were 
convinced they were discovering and describing mathematical facts. Taking 
a Wittgensteinian stance on conceptual structures (while setting aside his re‑
visionary tendencies), those inventions are on one hand revealed as arbitrary, 
while on the other they manifest themselves as secured in universal, pre‑
‑grammatical cognitive conditions which enable mathematicians’ agreement 
in judgements.

However, one cannot neglect to mention that in this case there can be no 
talk of unequivocal agreement in judgements, since there are many standpoints 
in direct opposition to set theory.21 One could respond to this objection by 
pointing to the two main reasons for that discordance. First, to this point 
neither transfinite calculus nor actual infinity have proven beyond reasonable 
doubt to be indispensable to any extra ‑mathematical applications. Second, 
the underlying context of the invention of transfinites was mathematical Pla‑
tonism; therefore, it seems that acceptance of the techniques proposed by 
Cantor et consortes automatically results in serious ontological commitments 
(this is a belief readily reinforced by the many contemporary set theorists 
who are dedicated Platonists). The first reason will remain valid for as long as 
there is no application of ZFC axioms in physics or technology.22 As has been 
demonstrated above, the second reason is partly illusory: one does not need to 
assume that symbols and notions employed in calculi refer to anything real. 
The continuum may exist in precisely the same sense as a complex number 
with a non ‑zero imaginary component or the natural number 12. For Frege, 
the latter was a real object — the set of all 12 ‑element sets existing in the 
“third realm” — but this is merely a variation on the Platonic theme that 
we do not need to follow. For Wittgenstein, on the other hand, the number 
12 can be given thanks to a surveyable symbolic construction23. I believe the 

21 Indeed, there have been many examples of disputes concerning the introduction of new 
concepts, techniques, or sets of symbols throughout the history of mathematics. Examples in‑
clude the introduction of Arabic numerals into Europe, the emergence of zero, and the dispute 
between the abacists and the algorists. It seems to be that it was the effectivity and applicability 
of a given technique that dispelled controversy for good (Ifrah, 2000: 586–590).

22 Some aspects of transfinite set theory do indeed seem completely useless. The invention 
of a ball ‑duplicating machine that would work on the basis of the Banach ‑Tarski theorem 
seems rather unlikely. It is also hard to imagine that the CH could ever find any empirical 
confirmation or falsification by appearing to be true or false in a manner similar to Euclid’s 
fifth postulate. On the other hand, some scholars have argued that set theory does indeed have 
some applications in physics (Putnam, 2007).

23 Even before starting to write the Tractatus, Wittgenstein was already extremely criti‑
cal of the basic assumptions of Russellian and Fregean logicism. Not only did he reject their 
ontology and epistemology of mathematics, but he also dismissed the very notion of founding 
mathematics upon set theory. He considered the latter unable to provide an adequate ground‑
ing for the former, since any attempt at rendering numbers as individual objects obscures their 
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conclusion to be drawn from the existence of the BMI theory should be that 
actual infinity can also be surveyable, provided we accept the key element in 
the construction of the relevant metaphor. This is obviously a surveyability 
that the revisionist Wittgenstein would not accept, for it is predicated upon 
an approach that he explicitly condemned: the understanding of an unlimited 
process, defined by a certain law, as a thing, or, more specifically, a container 
(Lakoff & Núñez, 2000: 163).

§4

The key property of the BMI — that an indefinite process can have a final 
unique resultant state — is precisely what Ramsey and Wittgenstein con‑
sidered to be absurd, instead opting for an intensional (de facto Aristotelian) 
conception of infinity. This revisionist, intensional philosophy of mathematics 
developed by Wittgenstein over his middle and late period remains a fascinat‑
ing and attractive approach to set theory. Its revisionism rests upon two cri‑
teria: that mathematics is to be grounded in extra ‑mathematical application, 
while its admissible extensions must conform to strictly finitist surveyabil‑
ity. Both conditions posit certain philosophical declarations with far ‑reaching 
ramifications.

Can such conditions be justified? This question can likewise be consid‑
ered on the two separate levels. Having adopted the quietist conventionalism 
outlined in §3, on a philosophical level we can interpret them as the gram‑
mar arbitrarily established by Wittgenstein for the notions of “infinity” and 
“mathematics”. Such a grammar would be internally coherent and in line with 
the general anti ‑metaphysical approach espoused by him. On the other hand, 
the question concerning the origin of the specific form of this grammar, along 
with the broader issue related to it, namely why Aristotle, Hume, Kronecker, 
Ramsey, Wittgenstein, and numerous others chose to reject the notion of ac‑
tual infinity, may be considered from an empirical point of view. Perhaps there 
exist some “hard” biological preconditions for mistrust of actual infinity; then 
again they could be limited to ones based in culture and history.

Regardless of the reasons for favouring the intensional grammar of infin‑
ity by Wittgenstein (et consortes), at the rational level its arbitrariness means 
that its applicability as an argument against transfinitism is limited to the very 
fact that the latter finds a legitimate rival, implying that the set ‑theoretic ap‑
proach to mathematics has an interesting and viable alternative. However, it 
also means that Wittgenstein’s position is not unlike that of Moore in his dis‑
pute with a king who believes that the world had not existed prior to his birth, 
defining trait, which is that they belong to a sequence, or, to phrase it in a Tractarian manner, 
they are the exponents of an abstract operation iterated without an end (TLP: 6.021).
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an example described in On certainty. For the king to be convinced, he would 
have to “be brought to look at the world in a different way”, says Wittgenstein, 
suggesting that George E. Moore would eventually be in a position to do so, 
though he would not be able to utilise any of his intra ‑systemic arguments to 
support his view (OC: §92). What could the English philosopher use as his 
last resort? I suppose Wittgenstein’s suggestion would have been an appeal to 
practice, the applicability of the system to people’s lives.

Wittgenstein apparently believed that the same sorts of arguments could 
settle the matter of infinity in his favour: all conceivable extra ‑mathematical 
applications of the notion would fall under his intensional conception, with 
Cantor’s transfinite hierarchy having no imaginable use. Let us leave aside the 
question of whether this is actually the case or not.24 Instead, let us notice 
that the applicability of a calculus is in fact an accidental matter that seems 
to be external to mathematics itself. Moreover, it is plausible that though 
a certain collection of mathematical techniques will never find its applica‑
tion, it can well serve as crucial inspiration for the invention of other, easily 
applicable techniques.25 Therefore, Wittgenstein’s criterion of applicability is 
revealed as too strict to be reasonable. A lack of contemporary application, or 
even a clue of what a future application might be, should not then be taken 
as a decisive argument in support of or against a given set of mathematical 
techniques.

CONCLUSION

And so we arrive at two alternative proposals for the understanding of infin‑
ity: no ‑metaphysical ‑strings ‑attached transfinitism and intensional finitism. 
They differ not only by the techniques they permit, but first and foremost by 
the criteria according to which they acknowledge something as an element of 
mathematics. Both proposals are legitimate from the stance that I have de‑
scribed as quietist conventionalism, which I associate with the non ‑revisionist 
tendency within Wittgenstein’s thought. The perspective taken by the revi‑
sionist Wittgenstein accepts only the latter proposal (intensional finitism), 
but the two main arguments in favour of such a revisionism are rather uncon‑
vincing. First, the acceptance or rejection of the surveyability of the symbol 
of actual infinity is in fact our own decision, meaning that the intensional 
character of infinity is simply an internal postulate of Wittgenstein’s theory of 

24 Certainly, one could easily find s o me  use for transfinite set theory: it may be employed 
to entertain students or to impress someone we fancy, but this is not the kind of use that we 
would consider relevant.

25 This, on the other hand, is a form of non ‑direct application that we would consider 
relevant (see the previous footnote).
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mathematics. Second, the reliance upon applicability (or even the possibility 
of it) as a criterion determining whether something belongs to mathematics 
or is just a game of symbols is highly dubious, since it presupposes a static 
view of science: we are unable to foresee what will prove useful in future. 
Something currently considered to be mere fiction may become the source of 
inspiration for a new path of scientific research, just like atomism, which the 
majority of late nineteenth ‑century physicists considered to be metaphysi‑
cal nonsense. Therefore, we arrive at one conclusion: that our attempts at 
weeding out metaphysics from formal science, however reasonable, should not 
constrain too strictly the pursuit for the proper sense of certain concepts, even 
though they may be of metaphysical inspiration.
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