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University in face of AI – an introduction to the analysis

The development of full artificial intelligence could spell the end  
of the human race… It would take off on its own, and re-design itself 

at an ever increasing rate. Humans, who are limited by slow biological 
evolution, couldn’t compete, and would be superseded.

Stephen Hawking, BBC

The university undoubtedly belongs to an institution with a long tradition and wide 
social influence. For many years it was treated as an institution educating the intel-
lectual elite and had a monopoly in this area. It seems, however, that it is currently in 
a deep crisis of its own identity, as classically understood academic education is in-
creasingly being replaced by modern and dynamic forms of education. Many of them 
are accessible via the Internet, which has become especially important in the era of 
a global pandemic. What’s more, currently, solutions based on machine learning and 
even artificial intelligence algorithms are used on a large scale in the technical area. 
These changes also concern the educational area of various levels, including higher 
education and academic research practice. The dissemination of this type of practice 
coincided with the process of cloud computing development (Chmielecki 2019a). It 
is therefore worth asking in this context about the type and scale of the impact of 
artificial intelligence (AI) and machine learning (ML) on the future of the university 
institution.

Ivory Tower decomposition

The university is an institution with a long tradition dating back to the Middle 
Ages and, according to some researchers, even to earlier ancient philosophical 
schools.1 From the beginning of its existence, the university was focused on con-
ducting scientific research and educating staff (administration, medics, clergy) 
for the needs of the state and the community. Despite the passage of time and the 
changing conditions in which the university functioned, the university lasted almost 

1 We can mention here, for example, the Pythagorean Union, the Academy of Plato or 
the Lyceum of Aristotle, which were a kind of “proto” form or pattern of the university in 
its classical understanding. Incidentally, it is also worth adding that not only the mentioned 
European institutions should be taken into account, but also the philosophical and religious 
schools known in the culture of the Far East.
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unchanged and due to this “permanence” it is sometimes called the “ivory tower” 
(cf. Côté, Allahar 2007: 183). The term can be read in at least two ways. Positive as 
an impregnable “fortress” and “temple of truth” that is immune to temporary fash-
ions and violent revolutions. Then again, it can be a place of retreat where “deaf” 
are taught for the needs of practice and the demands of today. Nevertheless, re-
gardless of the interpretation adopted, the university had a monopoly for carrying 
out research and higher education for many years. The situation started to change 
approximately over a dozen years ago, when numerous institutions for vocation-
al education were established in a full-time mode, but also in the online formula. 
Platforms providing various on-demand courses (Education on Demand, EoD) were 
also gradually gaining popularity. As a result of these changes, the university found 
itself in a difficult position to compete in the educational services market. However, 
the turning point was the situation of the global SARS-CoV-2 pandemic at the turn 
of 2019/2020, which completely changed the educational and research landscape 
in the entire world.2

The global pandemic has shown how the paradigm of education and research 
in higher education is changing (Chmielecki 2021). From the only traditional form, 
there was a transition to hybrid (combined) forms to implement a completely re-
mote formula with full lockdown. The pandemic has also shown that many univer-
sities are not ready for this form. Unfortunately, this led to the collapse of many of 
them, and if not, at least to significant losses in the area of finances, number of stu-
dents and institution prestige. Alternatively, this situation has become a good basis 
for the development of modern forms of teaching that use a number of the latest 
technological solutions, including elements of AI and ML.

AI/ML boost

When considering artificial intelligence, it is worth making an initial distinc-
tion between artificial intelligence and machine learning. They are definitely not 
the same, but closely related and influencing each other. AI is definitely a more ex-
tensive collection that includes ML and other solutions such as deep learning or the 
decision-making paradigm. We can use the example of speech recognition technol-
ogy in a mobile device (smartphone, tablet, etc.), where AI would mean the device’s 

2 During the World Economic Forum 2021 (Davos Agenda) Suzanne Fortier, the Princi-
pal and Vice-Chancellor of McGill University in Montreal and a fellow of the American Associ-
ation for the Advancement of Science, pointed out that COVID did the massive changes to the 
academic landscape: “We have a lot of learners who are at different stages of their academic 
and career journeys. Those newer students, who had come to us recently and were just start-
ing their experience of university, are really missing the dynamic nature of life on campus. 
But those who come to us for upskilling and reskilling, typically people who are already in 
the workforce, have found many advantages in the flexibility that we now offer. So that’s been 
a positive impact. A large part of that is because of the tools and technology we can use to 
deliver remote learning and support online collaborations. Related to that is another positive 
impact. And that’s the extent to which researchers across disciplines around the world have 
been able to work together and really learn about this virus, its impact and how to address 
it” (Fleming 2021).
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ability to learn and interpret the voice commands of a specific user, and ML would 
be responsible for backend algorithms that enable recognition of commands and ex-
ecution of specific functions in the device (Mueller, Massaron 2016: 9). Operations 
performed by ML algorithms are used to process raw data and to draw some results 
with a certain amount of probability (for example after an anomaly detection due to 
linear regression). These can then be used by AI as input material for further anal-
ysis. Thus, it can be briefly said that thanks to the work done by ML algorithms it is 
possible to implement AI solutions more widely.

ML is more common today than many people realize. There are more and 
more chatbots, the mechanisms recommending content on streaming and shopping 
websites are more and more accurate – and all this is based on the ML solutions. 
According to the report “The Gartner Hype Cycle for Emerging Technologies 2020”, 
in the next 2–3 years and further 5–10 years, the development of AI will significantly 
progress (Panetta 2021). The development of AI solutions also forces the improve-
ment of ML algorithms that analyze large data sets obtained from different and un-
structured data.

When talking about AI, we may see futuristic visions straight from American cin-
ematography such as Terminator or Blade Runner. However, such a vision is unlikely, 
or even unrealistic. Currently, we are closer to the use of AI in the area of automation 
of selected human works, such as domestic help (cleaning robots), production of items 
(robots on the assembly line) or customer service (chatbots) (cf. Microsoft 2018: 11). 
Currently, solutions in the field of augmented, mixed and virtual reality (AR, MR, VR) 
are also developing, which will constitute a broad base for the implementation of ML 
solutions. Work is also underway on autonomous vehicles that use AI elements, al-
though we won’t see them soon. The current solutions do not include in any way the 
development of artificial awareness and independent thinking of androids, but rath-
er constitute a kind of service platform working for the benefit of humans (Mueller, 
Massaron 2016: 13). ML-based AI solutions are now largely limited to multivariate 
analysis of large data sets, which is beyond human capabilities. The machine will com-
plete this task much faster and will not bother with it, especially if we take into account 
the virtually unlimited hardware resources of the largest cloud vendors3 (Microsoft4,  

3 It is worth to mention that in the report “The Forrester Wave™: Notebook-Based Pre-
dictive Analytics and Machine Learning, Q3 2020” authors evaluated 26-criterion of predic-
tive analytics and machine learning (PAML) providers, and identified the twelve most signif-
icant ones – Amazon Web Services, Anaconda, Civis Analytics, Cloudera, Databricks, Domino 
Data Lab, Google, MathWorks, Microsoft, OpenText, Oracle, and RStudio – and researched, 
analyzed, and scored them. The report shows how each provider measures up and helps ap-
plication development and delivery (AD&D) professionals select the right one for their needs. 
Among the leaders authors mentioned: Microsoft, Google, Cloudera and Domino Data Lab (cf. 
Carlsson, Gualtieri, Sridharan, Perdoni 2020).

4 “Microsoft provides coding data scientists with all the bells and whistles. From what 
was a collection of disparate PAML offerings – Azure ML Workbench, Azure ML Studio, and 
Azure Batch AI – Microsoft has forged a new unified offering, Microsoft Azure Machine Learn-
ing. The result is transformational. Microsoft Azure Machine Learning offers a full suite of en-
terprise PAML capabilities, from centralized model registries to hyperparameter tuning and 
modular model training and deployment pipelines. Microsoft has paid particular attention 
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Google5, Amazon Web Services6, Alibaba, etc.). However, questionable issue in this 
area may be the care for data security and privacy, especially personal or sensitive 
data (cf. Awol 2018: 18).

to collaboration – e.g., making it possible for users to work simultaneously in the same note-
book, and integrations with Jenkins and GitHub interactions to enable MLOps capabilities as 
well as fairness and responsible machine learning – e.g., building in capabilities to test models 
on sensitive variables like age and gender, recommending mitigation models, and protecting 
data by adding noise or enabling eyes-off training. Microsoft Azure Machine Learning also 
has AutoML wizards, drag-and-drop tools for building ML pipelines, and integrations to build 
models within SQL editors to support developers, data analysts, and other non-data scientists 
who want to build and deploy models. The major cloud vendors have long had a gap in offer-
ing a comprehensive PAML platform that meets the full set of enterprise data science team 
needs, to the detriment of bewildered customers who have had to build or find their own 
solutions. Microsoft has filled that gap and then some. Between the strength of its sales teams, 
size of its existing customer base, and Microsoft’s own massive internal usage of Microsoft 
Azure Machine Learning, the success of Microsoft’s PAML strategy is a near certainty. Indeed, 
its future is azure’d” (Carlsson, Gualtieri, Sridharan, Perdoni 2020).

5 “Google offers one-stop AI shopping on Google Cloud Platform. Google’s AI Platform 
Notebooks offering, made generally available in March 2020, lets data scientists rapidly spin 
up a JupyterLab notebook environment – preconfigured for a range of open source ML frame-
works – that has built-in integrations with Google’s AI Platform. These related services in-
clude BigQuery (for data storage), Dataprep (for data preparation), Dataproc (for large scale 
data processing), Data Labeling (for labeling data), AI Platform Training (for training jobs), AI 
Platform Prediction (for deploying models), Kubeflow (for deploying models on-premises),  
and the What-If Tool (for explainability). Google has services to support the full AI life- 
cycle, and it develops a host of AI innovations in both hardware and software that it often 
shares with the open source community, such as TensorFlow. Google’s AI Platform Notebooks 
service is a convenient, scalable tool for data scientists looking to leverage Google Cloud Plat-
form for training or deploying models, especially deep learning models. However, to be more 
competitive, it needs more modeling, collaboration, and ModelOps capabilities” (Carlsson, 
Gualtieri, Sridharan, Perdoni 2020).

6 “Amazon Web Services weaves a web of sagacious ML services. From its not-so- 
-humble beginnings in late 2017 as a collection of ML algorithms offered as a cloud service, 
AWS SageMaker has developed into a more complete PAML offering that covers the PAML 
lifecycle. Indeed, it is starting to outpace competitors by introducing innovative capabilities to 
support the broader lifecycle of an AI application. These include Ground Truth (a data labeling 
service), the Step Functions Data Science SDK (for rapidly building data and ML deployment 
pipelines), Model Monitor (for monitoring ML models in production), Augmented AI (human 
review for low-confidence predictions), and, to the delight of anyone training deep learning 
models, SageMaker Debugger. (See note 3) For model development, SageMaker Studio offers 
an increasingly comprehensive and integrated notebook environment, and SageMaker 
Autopilot distinguishes itself as an AutoML capability by creating fully transparent notebooks 
for each model it trains. Given AWS’s popularity for data storage and application development, 
it always had a head start when it comes to attracting cloud ML workloads, and it has built 
a widening set of frequently innovative PAML capabilities. To be more competitive, AWS 
needs to further integrate these services into a unified offering that can more seamlessly 
support the end-to-end workflow of enterprise data science teams. Amazon Web Services 
declined to participate in the full Forrester Wave evaluation process (Carlsson, Gualtieri, 
Sridharan, Perdoni 2020).



University in face of AI – an introduction to the analysis [43]

Elements of AI, or at least ML algorithms, are used not only in strictly tech-
nological solutions or in the area of services understood in general, but also in the 
academic dimension, where they support scientists in working with large data sets. 
Statistical analysis present in social sciences or probability and heuristic analysis 
are just some of the possible applications of ML. Evolutionary algorithms learned  
on the basis of data volume analysis allows user to choose the solution that best 
suits the given criteria. In this respect, the algorithm’s work is paralleled on many 
parallel paths, which may resemble the model of the work of brain neurons. The 
conducted analysis contributes to the selection of the solution closest to the given 
criteria and at the same time improves the accuracy of the algorithm that learns 
based on the analyses and comparisons carried out. Even more advanced AI algo-
rithms, like reinforcement learning, which bases on trial-and-error paradigm can-
not perform 100 per cent accurate actions (Castaño 2018: 635). Thus, ML alone is 
unable to make the final decision that is attributed to the human-scientist. Thus, 
even in this seemingly dehumanized area, the final decision is assigned to a per-
son who, based on the collected data and the ML obtained results of analyses, can 
make a more informed decision and launch actions. This principle also applies to the 
Artificial General Intelligence which applies to more common and general situations 
(Arel 2012: 90). However, I will focus massively on this particular area in my consid-
erations, because it is too broad a topic for the purpose of this study.

Issues on AI correctness typically happen when people relay on the “clear” 
model based on “idealized assumptions” which should guarantee expected results 
(usually the assumptions required by their available theoretical or technical tools) 
(Wang 2012: 319). In practice, however, we know that such laboratory conditions 
are practically non-existent and when analyzing the impact and significance of ML 
and AI, one should take into account the importance of a number of distractors that 
will distort the assessment of the situation, as well as the risk of incompleteness of 
the cognitive perspective, caused for example by insufficient input data.

Adjusting university

Although I have already raised the question about the role of the university in 
the technical world in another study (Chmielecki 2019b), however in the face of AI 
and ML, the question of developing the shape of a modern university still seems to 
be open. Perhaps the most problematic area now is the distinction between a uni-
versity and other educational institutions (higher, vocational, general, etc.). It seems 
that the “humanistic element” that distinguished university, as well as the concern 
for learning universal truth and respect for cultural heritage and universal values 
are disappearing somewhere. In the face of these changes, the university itself  
is slowly transforming into one of the many institutions of vocational education 
in accordance with the requirements of the labour market and publicly expressed 
social expectations. This formula is not much different from EoD courses offered 
on streaming platforms such as Udemy or Pluralsight, where the student becomes 
a passive recipient of the content prepared by the teacher. There are many institu-
tions of this type on the educational market, but the university should not be one of 
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them, but rather stand out among them. The university, in a way, necessarily adapts 
to changes, including technological changes (Mainardes, Alves, Raposo 2011: 140), 
so as not to persist as a particular entity in a backwater of the world. While it is un-
derstandable that modern university adapts to changes, uses technology, migrates 
to cloud computing to improve its efficiency, it is difficult to accept turning away 
from its rich and long tradition and abandoning its mission. Certainly, a university 
can and should use new technologies, including AI, but these should not obscure its 
mission and role in the culture of his time.

Final round: will AI replace human scientist?

In the final part of the article, it is worth asking the question about the future 
of the university in the face of AI and ML development. In the light of the above 
analyses, it can be concluded that ML does not have to be a threat to the education-
al process or scientific research conducted by scientists. ML solutions will rather 
be a good tool to supplement the portfolio of analytical tools and at the same time 
a kind of “relief” for teachers and researchers in the implementation of simple and 
repeatable analyses on large data sets. Indeed, this is precisely the application of 
ML and the other mechanisms that compose AI to facilitate his or her work as the 
researcher. Certainly, ML will not replace people at work, but will complement 
their work, leaving room for deeper analysis and creative work (Mueller, Massaron 
2016: 27). Therefore, it is not a threat to the academic space, but rather a way to 
optimize it and improve work efficiency, because tedious research work (such as 
comparing data, searching for connections, etc.) will already be done by the algo-
rithm. It seems to be a revolution similar to the computer revolution, where files in 
the computer and special applications replaced sheets of paper and counting data 
on calculators. In that case, many scientists were feared of this shift, however now, 
I suppose many of us find it difficult to imagine the necessity to revert to these 
classical methods of scientific work. It is a bit different when it comes to AI. Here, 
the situation seems to be more complex, as the psychological barrier of working 
“with” or “for” the machine may be an obstacle. In this understanding, AI can affect 
the shape and scope of human work, but it certainly should not limit people to only 
carrying out assigned tasks, ignoring human experience and creativity (Mueller, 
Massaron 2016: 40; Russel, Norvig 2010: 5–16). Therefore, ML and AI solu-
tions should be treated as tools needed to perform the work of a scientist. These  
tools should facilitate daily duties and provide important support in many manual 
activities. Thus, the future human-machine collaboration does not look as bad as 
the fatalistic visions proclaim.
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Abstract
The article addresses the problem of the university’s crisis in the face of technological changes, 
including the particularly dynamically developing artificial intelligence and machine learning. 
In such a frame of reference, the university seems to lose the rudiments of its own identity 
and is placed in line with narrow professional education institutions. The development of 
artificial intelligence may constitute both a threat and a potential field for development for 
a university, but this status is currently heterogeneous. This article is an attempt to sketch 
out the impact of artificial intelligence and machine learning on the academic areas (both 
educational and research).
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Uniwersytet wobec AI – wstęp do analiz

Streszczenie
Artykuł porusza problem kryzysu uniwersytetu w obliczu zmian technologicznych, w tym 
szczególnie dynamicznie rozwijającej się sztucznej inteligencji i uczenia maszynowego. W ta-
kim układzie odniesienia uniwersytet zdaje się gubić rudymenty własnej tożsamości i jest 
stawiany w jednym szeregu z wąskimi instytucjami kształcenia profesjonalnego. Rozwój 
sztucznej inteligencji może stanowić dla uniwersytetu zarówno zagrożenie, jak i potencjalne 
pole do rozwoju, lecz status ten jest obecnie niejednorodny. Niniejszy artykuł stanowi próbę 
szkicowego nakreślenia wpływu sztucznej inteligencji i uczenia maszynowego na przestrzeń 
akademicką (edukacyjną i badawczą). 
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